Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Absence of ocular malignant transformation after sub-retinal delivery of rAAV2/2 or integrating lentiviral vectors in p53-deficient mice

Abstract

Insertional mutagenesis following gene therapy with gammaretroviral vectors can cause the development of lymphoproliferation in children with X-linked severe combined immunodeficiency. In experimental studies, recombinant adeno-associated virus (rAAV) vectors have also been reported to increase susceptibility to carcinogenesis. The possibility of vector-induced transformation in quiescent ocular cells is probably significantly lower than in mitotically active cells, but given the increasing number of clinical applications of rAAV and lentiviral vectors for ocular disease, a specific assessment of their oncogenic potential in the eye is important. In this study, we investigated the effect of rAAV2/2 and integrating HIV-1 vectors upon the incidence of ocular neoplasia in p53 tumour-suppressor gene-knockout (p53−/−) mice, which are highly susceptible to intraocular malignant transformation. Subretinal injections of high titre rAAV2/2 or integrating HIV-1 vectors induced no tumours in p53−/− or p53+/− animals, nor significantly affected their natural longevity. We conclude that any insertional events arising from subretinal delivery of these vectors appear insufficient to cause intraocular malignancy, even in highly susceptible animals. These findings support the continued development of these vectors for ocular applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  Google Scholar 

  2. Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  Google Scholar 

  3. Hacein-Bey-Abina S, von KC, Schmidt M, Le DF, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  4. Hacein-Bey-Abina S . LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  5. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007; 317: 477.

    Article  CAS  Google Scholar 

  6. Bell P, Moscioni AD, McCarter RJ, Wu D, Gao G, Hoang A et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Therapy 2006; 14: 34–44.

    Article  CAS  Google Scholar 

  7. Donsante A, Vogler C, Muzyczka N, Crawford JM, Barker J, Flotte T et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Therapy 2001; 8: 1343–1346.

    Article  CAS  Google Scholar 

  8. Deyle DR, Russell DW . Adeno-associated virus vector integration. Curr Opin Mol Ther 2009; 11: 442–447.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA . AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 2003; 34: 297–302.

    Article  CAS  PubMed  Google Scholar 

  10. Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 2005; 79: 3606–3614.

    Article  CAS  PubMed  Google Scholar 

  11. Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R, Russell DW . Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 2005; 79: 11434–11442.

    Article  CAS  PubMed  Google Scholar 

  12. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F . HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    Article  CAS  Google Scholar 

  13. Mantovani J, Charrier S, Eckenberg R, Saurin W, Danos O, Perea J et al. Diverse genomic integration of a lentiviral vector developed for the treatment of Wiskott-Aldrich syndrome. J Gene Med 2009; 11: 645–654.

    Article  CAS  PubMed  Google Scholar 

  14. Bartholomae CC, Arens A, Balaggan KS, Yanez-Munoz RJ, Montini E, Howe SJ et al. Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol Ther 2011; 19: 703–710.

    Article  CAS  PubMed  Google Scholar 

  15. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  Google Scholar 

  16. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  Google Scholar 

  17. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  PubMed  Google Scholar 

  18. Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009; 18: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  19. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 2010; 19: 2581–2593.

    Article  CAS  PubMed  Google Scholar 

  20. Mihelec M, Pearson RA, Robbie SJ, Buch PK, Azam SA, Bainbridge JW et al. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther 2011; 22: 1179–1190.

    Article  CAS  PubMed  Google Scholar 

  21. Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morris LM et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 2011; 20: 3161–3175.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi M, Miyoshi H, Verma IM, Gage FH . Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73: 7812–7816.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Tschernutter M, Schlichtenbrede FC, Howe S, Balaggan KS, Munro PM, Bainbridge JW et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy 2005; 12: 694–701.

    Article  CAS  Google Scholar 

  24. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  Google Scholar 

  25. Bemelmans AP, Kostic C, Crippa SV, Hauswirth WW, Lem J, Munier FL et al. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med 2006; 3: e347.

    Article  PubMed  Google Scholar 

  26. Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Sakamoto T, Tabata T et al. Simian lentiviral vector-mediated retinal gene transfer of pigment epithelium-derived factor protects retinal degeneration and electrical defect in Royal College of Surgeons rats. Gene Therapy 2003; 10: 1503–1511.

    Article  CAS  PubMed  Google Scholar 

  27. Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Kohno R, Murakami Y et al. Synergistic neuroprotective effect via simian lentiviral vector-mediated simultaneous gene transfer of human pigment epithelium-derived factor and human fibroblast growth factor-2 in rodent models of retinitis pigmentosa. J Gene Med 2008; 10: 1273–1281.

    Article  CAS  PubMed  Google Scholar 

  28. Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Therapy 2008; 15: 1311–1320.

    Article  CAS  PubMed  Google Scholar 

  29. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  Google Scholar 

  30. Flotte TR, Afione SA, Zeitlin PL . Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol 1994; 11: 517–521.

    Article  CAS  PubMed  Google Scholar 

  31. Kearns WG, Afione SA, Fulmer SB, Pang MC, Erikson D, Egan M et al. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Therapy 1996; 3: 748–755.

    CAS  PubMed  Google Scholar 

  32. Ponnazhagan S, Erikson D, Kearns WG, Zhou SZ, Nahreini P, Wang XS et al. Lack of site-specific integration of the recombinant adeno-associated virus 2 genomes in human cells. Hum Gene Therapy 1997; 8: 275–284.

    Article  CAS  Google Scholar 

  33. Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR . Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003; 77: 3495–3504.

    Article  CAS  PubMed  Google Scholar 

  34. Miller DG, Petek LM, Russell DW . Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 2004; 36: 767–773.

    Article  CAS  PubMed  Google Scholar 

  35. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  36. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852.

    Article  CAS  PubMed  Google Scholar 

  37. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  38. Attardi LD, Jacks T . The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 1999; 55: 48–63.

    Article  CAS  PubMed  Google Scholar 

  39. Clarke AR . Murine models of neoplasia: functional analysis of the tumour suppressor genes Rb-1 and p53. Cancer Metastasis Rev 1995; 14: 125–148.

    Article  CAS  PubMed  Google Scholar 

  40. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Albert DM, Gonder JR, Papale J, Craft JL, Dohlman HG, Reid MC et al. Induction of ocular neoplasms in Fischer rats by intraocular injection of nickel subsulfide. Invest Ophthalmol Vis Sci 1982; 22: 768–782.

    CAS  PubMed  Google Scholar 

  42. Balaggan KS, Binley K, Esapa M, Iqball S, Askham Z, Kan O et al. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 2006; 8: 275–285.

    Article  CAS  Google Scholar 

  43. Duisit G, Conrath H, Saleun S, Folliot S, Provost N, Cosset FL et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002; 6: 446–454.

    Article  CAS  Google Scholar 

  44. Jeon CJ, Strettoi E, Masland RH . The major cell populations of the mouse retina. J Neurosci 1998; 18: 8936–8946.

    Article  CAS  PubMed  Google Scholar 

  45. McCarty DM, Young Jr SM, Samulski RJ . Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004; 38: 819–845.

    Article  CAS  Google Scholar 

  46. Sinn PL, Sauter SL, McCray Jr PB . Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Therapy 2005; 12: 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  47. Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 2009; 15: 1431–1436.

    Article  CAS  PubMed  Google Scholar 

  48. Zacharias J, Romanova LG, Menk J, Philpott NJ . p53 inhibits adeno-associated viral vector integration. Hum Gene Therapy 2011; e-pub ahead of print 8 June 2011.

  49. Barker SE, Broderick CA, Robbie SJ, Duran Y, Natkunarajah M, Buch P et al. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 2009; 11: 486–497.

    Article  CAS  PubMed  Google Scholar 

  50. Reichel MB, Ali RR, D'Esposito F, Clarke AR, Luthert PJ, Bhattacharya SS et al. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death Differ 1998; 5: 156–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Emma West for confocal microscopy. We also thank Dr Alan Clarke of the University of Cardiff, Wales for the supplying the p53-deficient mice used in this study. JWBB and RRA are supported by the National Institute for Health Research Biomedical Research Centre for Ophthalmology. We also wish to thank the Special Trustees of Moorfields Eye Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Balaggan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaggan, K., Duran, Y., Georgiadis, A. et al. Absence of ocular malignant transformation after sub-retinal delivery of rAAV2/2 or integrating lentiviral vectors in p53-deficient mice. Gene Ther 19, 182–188 (2012). https://doi.org/10.1038/gt.2011.194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.194

Keywords

This article is cited by

Search

Quick links