Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV5-mediated gene transfer to the parotid glands of non-human primates

Abstract

Salivary glands are potentially useful target sites for multiple clinical applications of gene transfer. Previously, we have shown that serotype 2 adeno-associated viral (AAV2) vectors lead to stable gene transfer in the parotid glands of rhesus macaques. As AAV5 vectors result in considerably greater transgene expression in murine salivary glands than do AAV2 vectors, herein we have examined the use of AAV5 vectors in macaques at two different doses (n=3 per group; 1010 or 3 × 1011 particles per gland). AAV5 vector delivery, as with AAV2 vectors, led to no untoward clinical, hematological or serum chemistry responses in macaques. The extent of AAV5-mediated expression of rhesus erythropoietin (RhEpo) was dose-dependent and similar to that seen with an AAV2 vector. However, unlike results with the AAV2 vector, AAV5 vector-mediated RhEpo expression was transient. Maximal expression peaked at day 56, was reduced by 80% on day 84 and thereafter remained near background levels until day 182 (end of experiment). Quantitative PCR studies of high-dose vector biodistribution at this last time point showed much lower AAV5 copy numbers in the targeted parotid gland (1.7%) than found with the same AAV2 vector dose. Molecular analysis of the conformation of vector DNA indicated a markedly lower level of concatamerization for the AAV5 vector compared with that of a similar AAV2 vector. In addition, cellular immunological studies suggest that host response differences may occur with AAV2 and AAV5 vector delivery at this mucosal site. The aggregate data indicate that results with AAV5 vectors in murine salivary glands apparently do not extend to macaque glands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zufferey R, Aebischer P . Salivary glands and gene therapy: the mouth waters. Gene Therapy 2004; 11: 1425–1426.

    Article  CAS  PubMed  Google Scholar 

  2. Baum BJ, Voutetakis A, Wang J . Salivary glands: novel target sites for gene therapeutics. Trends Mol Med 2004; 10: 585–590.

    Article  CAS  PubMed  Google Scholar 

  3. Shan Z, Li J, Zheng C, Liu X, Zhang C, Goldsmith CM et al. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther 2005; 11: 444–451.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Voutetakis A, Zheng C, Baum BJ . Rapamycin control of exocrine protein levels in saliva after adenoviral vector-mediated gene transfer. Gene Therapy 2004; 11: 729–733.

    Article  CAS  PubMed  Google Scholar 

  5. Voutetakis A, Kok MR, Zheng C, Bossis I, Wang J, Cotrim AP et al. Reengineered salivary glands are stable endogenous bioreactors for systemic gene therapeutics. Proc Natl Acad Sci USA 2004; 101: 3053–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferber D . Gene therapy: safer and virus free? Science 2001; 294: 1638–1642.

    Article  CAS  PubMed  Google Scholar 

  7. Casals M, Haskins M . Large animal models and gene therapy. Eur J Hum Genet 2006; 14: 266–272.

    Article  Google Scholar 

  8. Voutetakis A, Zheng C, Mineshiba F, Cotrim AP, Goldsmith CM, Schmidt M et al. Adeno-associated virus serotype 2-mediated gene transfer to the parotid glands of nonhuman primates. Hum Gene Ther 2007; 18: 142–150.

    Article  CAS  PubMed  Google Scholar 

  9. Katano H, Kok MR, Cotrim AP, Yamano S, Schmidt M, Afione S et al. Enhanced transduction of mouse salivary glands with AAV5-based vectors. Gene Therapy 2006; 13: 594–601.

    Article  CAS  PubMed  Google Scholar 

  10. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 2003; 9: 849–855.

    Article  Google Scholar 

  11. Kampf D, Eckardt KU, Fischer HC, Schmalisch CB, Schostak M . Pharmacokinetics of recombinant erythropoietin in dialysis patients after single and multiple subcutaneous administrations. Nephron 1992; 61: 393–398.

    Article  CAS  PubMed  Google Scholar 

  12. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, et al . Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998; 73: 8568–8577.

    Google Scholar 

  13. Song S, Laipis PJ, Berns KI, Flotte TR . Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 2001; 98: 4084–4088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan Z, Zak R, Zhang Y, Engelhardt JF . Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes. J Virol 2005; 79: 364–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJE et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  16. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13: 419–422.

    Article  CAS  PubMed  Google Scholar 

  17. Kok MR, Yamano S, Lodde BM, Wang J, Couwenhoven RI, Yakar S et al. Local adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjogren's syndrome. Hum Gene Ther 2003; 14: 1605–1618.

    Article  CAS  PubMed  Google Scholar 

  18. Nathwani AC, Gray JT, McIntosh J, Ng CYC, Zhou J, Spence Y et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human Factor IX in non-human primates. Blood 2007; 109: 1414–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auricchio A, O’Connor E, Weiner D, Gao GP, Hildinger M, Wang L et al. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110: 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiorini JA, Afione S, Kotin RM . Adeno-associated virus (AAV) type 5 Rep protein cleaves a unique terminal resolution site compared with other AAV serotypes. J Virol 1999; 73: 4293–4298.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt M, Katano H, Bossis I, Chiorini JA . Cloning and characterization of a bovine adeno-associated virus. J Virol 2004; 78: 6509–6516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan Z, Lei-Butters DC, Zhang Y, Zak R, Engelhardt JF . Hybrid adeno-associated virus bearing nonhomologous inverted terminal repeats enhances dual-vector reconstruction of minigenes in vivo. Hum Gene Ther 2007; 18: 81–87.

    Article  CAS  PubMed  Google Scholar 

  24. Brister JR, Muzyczka N . Rep-mediated nicking of the adeno-associated virus origin requires two biochemical activities, DNA helicase activity and transesterification. J Virol 1999; 73: 9325–9336.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lotery AJ, Yang GS, Mullins RF, Russell SR, Schmidt M, Stone EM et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther 2003; 14: 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  26. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107: 1810–1817.

    Article  CAS  PubMed  Google Scholar 

  27. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaludov N, Handelman B, Chiorini JA . Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum Gene Ther 2002; 13: 1235–1243.

    Article  CAS  PubMed  Google Scholar 

  29. Lee GM, Thornwaite JT, Rasch EM . Picogram per cell determination of DNA by flow cytofluorometry. Analyt Biochem 1984; 137: 221–226.

    Article  CAS  PubMed  Google Scholar 

  30. Rivera VM, Gao GP, Grant RL, Schnell MA, Zoltick PW, Rozamus LW et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 2005; 105: 1424–1430.

    Article  CAS  PubMed  Google Scholar 

  31. Voutetakis A, Zheng C, Metzger M, Cotrim AP, Donahue RE, Dunbar CE et al. Sorting of transgenic secretory proteins in rhesus macaque parotid glands following adenoviral mediated gene transfer. Hum Gene Ther 2008; 19: 1401–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng C, Vitolo JM, Zhang W, Mineshiba F, Chiorini JA, Baum BJ . Extended transgene expression from a nonintegrating adenoviral vector containing retroviral elements. Mol Ther 2008; 16: 1089–1097.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Divisions of Intramural Research of the National Institute of Dental and Craniofacial Research and the National, Heart, Lung, and Blood Institute, National Institutes of Health. We thank the animal care staff and technicians for their excellent care and handling of the animals in Building 102 of the NIH Animal Facility in Poolesville, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voutetakis, A., Zheng, C., Cotrim, A. et al. AAV5-mediated gene transfer to the parotid glands of non-human primates. Gene Ther 17, 50–60 (2010). https://doi.org/10.1038/gt.2009.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.123

Keywords

This article is cited by

Search

Quick links