Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV

Abstract

Choroidal neovascularization (CNV) leads to loss of vision in age-related macular degeneration (AMD), the leading cause of blindness in adult population over 50 years old. In this study, we developed intravenously administered, nanoparticulate, targeted nonviral retinal gene delivery systems for the management of CNV. CNV was induced in Brown Norway rats using a 532 nm laser. We engineered transferrin, arginine–glycine–aspartic acid (RGD) peptide or dual-functionalized poly-(lactide-co-glycolide) nanoparticles to target delivery of anti-vascular endothelial growth factor (VEGF) intraceptor plasmid to CNV lesions. Anti-VEGF intraceptor is the only intracellularly acting VEGF inhibitory modality. The results of the study show that nanoparticles allow targeted delivery to the neovascular eye but not the control eye on intravenous administration. Functionalizing the nanoparticle surface with transferrin, a linear RGD peptide or both increased the retinal delivery of nanoparticles and subsequently the intraceptor gene expression in retinal vascular endothelial cells, photoreceptor outer segments and retinal pigment epithelial cells when compared to nonfunctionalized nanoparticles. Most significantly, the CNV areas were significantly smaller in rats treated with functionalized nanoparticles as compared to the ones treated with vehicle or nonfunctionalized nanoparticles. Thus, surface-functionalized nanoparticles allow targeted gene delivery to the neovascular eye on intravenous administration and inhibit the progression of laser-induced CNV in a rodent model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP . Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003; 48: 257–293.

    Article  PubMed  Google Scholar 

  2. Zarbin M, Szirth B . Current treatment of age-related macular degeneration. Optom Vis Sci 2007; 84: 559–572.

    Article  PubMed  Google Scholar 

  3. Ng EW, Adamis AP . Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J Ophthalmol 2005; 40: 352–368.

    Article  PubMed  Google Scholar 

  4. Jani PD, Singh N, Jenkins C, Raghava S, Mo Y, Amin S et al. Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 2007; 48: 2030–2036.

    Article  PubMed  Google Scholar 

  5. Singh N, Amin S, Richter E, Rashid S, Scoglietti V, Jani PD et al. Flt-1 intraceptors inhibit hypoxia-induced VEGF expression in vitro and corneal neovascularization in vivo. Invest Ophthalmol Vis Sci 2005; 46: 1647–1652.

    Article  PubMed  Google Scholar 

  6. Gerber HP, Ferrara N . The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med 2003; 81: 20–31.

    Article  CAS  PubMed  Google Scholar 

  7. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417: 954–958.

    Article  CAS  PubMed  Google Scholar 

  8. Santos SC, Dias S . Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004; 103: 3883–3889.

    Article  CAS  PubMed  Google Scholar 

  9. Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J et al. Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 1995; 270: 28316–28324.

    Article  CAS  PubMed  Google Scholar 

  10. Lai CC, Wu WC, Chen SL, Xiao X, Tsai TC, Huan SJ et al. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 2001; 42: 2401–2407.

    CAS  PubMed  Google Scholar 

  11. Mori K, Gehlbach P, Yamamoto S, Duh E, Zack DJ, Li Q et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2002; 43: 1994–2000.

    PubMed  Google Scholar 

  12. Shyong MP, Lee FL, Kuo PC, Wu AC, Cheng HC, Chen SL et al. Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 2007; 13: 133–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Provost N, Le Meur G, Weber M, Mendes-Madeira A, Podevin G, Cherel Y et al. Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 2005; 11: 275–283.

    Article  CAS  PubMed  Google Scholar 

  14. Peeters L, Sanders NN, Braeckmans K, Boussery K, Van de Voorde J, De Smedt SC et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 2005; 46: 3553–3561.

    Article  PubMed  Google Scholar 

  15. Pitkanen L, Ruponen M, Nieminen J, Urtti A . Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 2003; 20: 576–583.

    Article  PubMed  Google Scholar 

  16. Pitkanen L, Pelkonen J, Ruponen M, Rönkkö S, Urtti A . Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model. AAPS J 2004; 6: e25.

    Article  PubMed  Google Scholar 

  17. Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003; 44: 3562–3569.

    Article  PubMed  Google Scholar 

  18. Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB . Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 2007; 13: 746–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE . Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Therapy 2005; 12: 1544–1550.

    Article  CAS  PubMed  Google Scholar 

  20. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI . Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 2006; 1: e38.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kawakami S, Harada A, Sakanaka K, Nishida K, Nakamura J, Sakaeda T et al. In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int J Pharm 2004; 278: 255–262.

    Article  CAS  PubMed  Google Scholar 

  22. Kompella UB, Sundaram S, Raghava S, Escobar ER . Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 2006; 12: 1185–1198.

    CAS  PubMed  Google Scholar 

  23. Lu W, Sun Q, Wan J, She Z, Jiang XG . Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 2006; 66: 11878–11887.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu C, Zhang Y, Pardridge WM . Widespread expression of an exogenous gene in the eye after intravenous administration. Invest Ophthalmol Vis Sci 2002; 43: 3075–3080.

    PubMed  Google Scholar 

  25. Zhu C, Zhang Y, Zhang YF, Yi Li J, Boado RJ, Pardridge WM . Organ-specific expression of the lacZ gene controlled by the opsin promoter after intravenous gene administration in adult mice. J Gene Med 2004; 6: 906–912.

    Article  CAS  PubMed  Google Scholar 

  26. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697–715.

    Article  CAS  PubMed  Google Scholar 

  27. Marcinkiewicz C, Rosenthal LA, Marcinkiewicz MM, Kowalska MA, Niewiarowski S . One-step affinity purification of recombinant alphavbeta3 integrin from transfected cells. Protein Expr Purif 1996; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  28. Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, Chang S et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996; 93: 9764–9769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He X, Hahn P, Iacovelli J, Wong R, King C, Bhisitkul R et al. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 2007; 26: 649–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chowers I, Wong R, Dentchev T, Farkas RH, Iacovelli J, Gunatilaka TL et al. The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 2006; 47: 2135–2140.

    Article  PubMed  Google Scholar 

  31. Bejjani RA, BenEzra D, Cohen H, Rieger J, Andrieu C, Jeanny JC et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005; 11: 124–132.

    CAS  PubMed  Google Scholar 

  32. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J . Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 2007; 120: 18–26.

    Article  CAS  PubMed  Google Scholar 

  33. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ . Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release 2001; 75: 211–224.

    Article  CAS  PubMed  Google Scholar 

  34. Zweers ML, Engbers GH, Grijpma DW, Feijen J . In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release 2004; 100: 347–356.

    Article  CAS  PubMed  Google Scholar 

  35. Yang R, Yang SG, Shim WS, Cui F, Cheng G, Kim IW et al. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci 2008 (e-pub ahead of print).

  36. Frangos SG, Knox R, Yano Y, Chen E, Di Luozzo G, Chen AH et al. The integrin-mediated cyclic strain-induced signaling pathway in vascular endothelial cells. Endothelium 2001; 8: 1–10.

    Article  CAS  PubMed  Google Scholar 

  37. Aukunuru JV, Ayalasomayajula SP, Kompella UB . Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligonucleotide in human retinal pigment epithelial cells. J Pharm Pharmacol 2003; 55: 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Therapy 2000; 7: 1896–1905.

    Article  CAS  PubMed  Google Scholar 

  39. Kamizuru H, Kimura H, Yasukawa T, Tabata Y, Honda Y, Ogura Y . Monoclonal antibody-mediated drug targeting to choroidal neovascularization in the rat. Invest Ophthalmol Vis Sci 2001; 42: 2664–2672.

    CAS  PubMed  Google Scholar 

  40. Yasukawa T, Kimura H, Tabata Y, Kamizuru H, Miyamoto H, Honda Y et al. Targeting of interferon to choroidal neovascularization by use of dextran and metal coordination. Invest Ophthalmol Vis Sci 2002; 43: 842–848.

    PubMed  Google Scholar 

  41. Yasukawa T, Kimura H, Tabata Y, Miyamoto H, Honda Y, Ikada Y et al. Targeted delivery of anti-angiogenic agent TNP-470 using water-soluble polymer in the treatment of choroidal neovascularization. Invest Ophthalmol Vis Sci 1999; 40: 2690–2696.

    CAS  PubMed  Google Scholar 

  42. Anzai K, Yoneya S, Gehlbach PL, Imai D, Wei LL, Mori K . Laser photocoagulation and, to a lesser extent, photodynamic therapy target and enhance adenovirus vector-mediated gene transfer in the rat retina. Invest Ophthalmol Vis Sci 2005; 46: 3883–3891.

    Article  PubMed  Google Scholar 

  43. Suzuma K, Takagi H, Otani A, Honda Y . Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells. Invest Ophthalmol Vis Sci 1998; 39: 1028–1035.

    CAS  PubMed  Google Scholar 

  44. Yi X, Ogata N, Komada M, Yamamoto C, Takahashi K, Omori K et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 1997; 235: 313–319.

    Article  CAS  PubMed  Google Scholar 

  45. Yefimova MG, Jeanny JC, Guillonneau X, Keller N, Nguyen-Legros J, Sergeant C et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci 2000; 41: 2343–2351.

    CAS  PubMed  Google Scholar 

  46. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007; 28: 869–876.

    Article  CAS  PubMed  Google Scholar 

  47. Furumoto K, Ogawara K, Yoshida M, Takakura Y, Hashida M, Higaki K et al. Biliary excretion of polystyrene microspheres depends on the type of receptor-mediated uptake in rat liver. Biochim Biophys Acta 2001; 1526: 221–226.

    Article  CAS  PubMed  Google Scholar 

  48. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ . What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 2007; 49: 217–229.

    Article  CAS  PubMed  Google Scholar 

  49. Ogawara K, Yoshida M, Furumoto K, Takakura Y, Hashida M, Higaki K et al. Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J Drug Target 1999; 7: 213–221.

    Article  CAS  PubMed  Google Scholar 

  50. Anderson DH, Johnson LV, Hageman GS . Vitronectin receptor expression and distribution at the photoreceptor–retinal pigment epithelial interface. J Comp Neurol 1995; 360: 1–16.

    Article  CAS  PubMed  Google Scholar 

  51. Hunt RC, Dewey A, Davis AA . Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton. J Cell Sci 1989; 92 (Part 4): 655–666.

    CAS  PubMed  Google Scholar 

  52. Erickson KK, Sundstrom JM, Antonetti DA . Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 2007; 10: 103–117.

    Article  PubMed  Google Scholar 

  53. Shen WY, Yu MJ, Barry CJ, Constable IJ, Rakoczy PE . Expression of cell adhesion molecules and vascular endothelial growth factor in experimental choroidal neovascularisation in the rat. Br J Ophthalmol 1998; 82: 1063–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andrieu-Soler C, Bejjani RA, de Bizemont T, Normand N, BenEzra D, Behar-Cohen F . Ocular gene therapy: a review of nonviral strategies. Mol Vis 2006; 12: 1334–1347.

    CAS  PubMed  Google Scholar 

  55. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 1999; 155: 421–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu K, Zhou Y, Kaufman K, Mott R, Ma JX . Rat strain-dependent susceptibility to ischemia-induced retinopathy associated with retinal vascular endothelial growth factor regulation. J Mol Endocrinol 2007; 38: 423–432.

    Article  CAS  PubMed  Google Scholar 

  57. Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 2006; 215: 100–108.

    Article  CAS  PubMed  Google Scholar 

  58. Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB . Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci 2006; 47: 1149–1160.

    Article  PubMed  Google Scholar 

  59. Zacks DN, Ezra E, Terada Y, Michaud N, Connolly E, Gragoudas ES et al. Verteporfin photodynamic therapy in the rat model of choroidal neovascularization: angiographic and histologic characterization. Invest Ophthalmol Vis Sci 2002; 43: 2384–2391.

    PubMed  Google Scholar 

  60. Campos M, Amaral J, Becerra SP, Farris RN . A novel imaging technique for experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2006; 47: 5163–5170.

    Article  PubMed  Google Scholar 

  61. Glushakova LG, Timmers AM, Pang J, Teusner JT, Hauswirth WW . Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors. Invest Ophthalmol Vis Sci 2006; 47: 3505–3513.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by NIH grants R24 EY017045 and R21 EY017360. Creation of VEGF intraceptor plasmid by Dr BK Ambati was supported by NIH grant 5RO1EY017182. We thank James R Talaska and Janice Taylor of the Confocal Laser Scanning Microscopy Core Facility at University of Nebraska Medical Center, which is supported by the Nebraska Research Initiative, for providing assistance with confocal microscopy. We thank Karen Dulany and Maureen Harman of the Eppley Histology Core Laboratory at University of Nebraska Medical Center, for their help in cryosectioning of the tissues. We also thank Dr Chandrasekar Durairaj and Rajendra S Kadam for their assistance during the study. We especially thank Dr Weiqing Gao, Emory Eye Center, Emory university, Atlanta, GA, for assistance with choroidal flatmounts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U B Kompella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Grossniklaus, H., Kang, S. et al. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 16, 645–659 (2009). https://doi.org/10.1038/gt.2008.185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.185

Keywords

This article is cited by

Search

Quick links