Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancing transduction of the liver by adeno-associated viral vectors

Abstract

A number of distinct factors acting at different stages of the adeno-associated virus vector (AAV)-mediated gene transfer process were found to influence murine hepatocyte transduction. Foremost among these was the viral capsid protein. Self-complementary (sc) AAV pseudotyped with capsid from serotype 8 or rh.10 mediated fourfold greater hepatocyte transduction for a given vector dose when compared with vector packaged with AAV7 capsid. An almost linear relationship between vector dose and transgene expression was noted for all serotypes with vector doses as low as 1 × 107 vg per mouse (4 × 108 vg kg−1) mediating therapeutic levels of human FIX (hFIX) expression. Gender significantly influenced scAAV-mediated transgene expression, with twofold higher levels of expression observed in male compared with female mice. Pretreatment of mice with the proteasome inhibitor bortezomib increased scAAV-mediated hFIX expression from 4±0.6 to 9±2 μg ml−1 in female mice, although the effect of this agent was less profound in males. Exposure of mice to adenovirus 10–20 weeks after gene transfer with AAV vectors augmented AAV transgene expression twofold by increasing the level of proviral mRNA. Hence, optimization of individual steps in the AAV gene transfer process can further enhance the potency of AAV-mediated transgene expression, thus increasing the probability of successful gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nathwani AC, Benjamin R, Nienhuis AW, Davidoff AM . Current status and prospects for gene therapy. Vox Sang 2004; 87: 73–81.

    Article  CAS  PubMed  Google Scholar 

  2. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  3. Manno CS, Arruda VR, Pierce GF, Glader B, Ragni M, Rasko J et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  4. Flotte TR, Brantly ML, Spencer LT, Byrne BJ, Spencer CT, Baker DJ et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Hum Gene Ther 2004; 15: 93–128.

    Article  PubMed  Google Scholar 

  5. Stedman H, Wilson JM, Finke R, Kleckner AL, Mendell J . Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: alpha-, beta-, gamma-, or delta-sarcoglycan gene delivered with intramuscular instillations of adeno-associated vectors. Hum Gene Ther 2000; 11: 777–790.

    Article  CAS  PubMed  Google Scholar 

  6. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  7. Davidoff AM, Gray JT, Ng CY, Zhang Y, Zhou J, Spence Y et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5 and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 2005; 11: 875–888.

    Article  CAS  PubMed  Google Scholar 

  8. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN et al. Self complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nathwani AC, Gray JT, McIntosh J, Ng CY, Zhou J, Spence Y et al. Safe and efficient transduction of the liver after peripheral vein infusion of self complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 2007; 109: 1414–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackus WJ, Frakking FN, Grummels A, Gamadia LE, De Bree GJ, Hamann D et al. Expansion of CMV-specific CD8+CD45RA+. Blood 2003; 102: 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  13. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC . Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 2003; 102: 480–488.

    Article  CAS  PubMed  Google Scholar 

  16. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy 2003; 10: 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  20. Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997; 3: 306–312.

    Article  CAS  PubMed  Google Scholar 

  21. Schwarzmeier JD, Hubmann R, Duchler M, Jager U, Shehata M . Regulation of CD23 expression by Notch2 in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2005; 46: 157–165.

    Article  CAS  PubMed  Google Scholar 

  22. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther 2006; 13: 67–76.

    Article  CAS  PubMed  Google Scholar 

  23. Nathwani AC, Davidoff A, Hanawa H, Zhuo F, Vanin EF, Nienhuis AW . Factors influencing in-vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood 2001; 97: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  24. Davidoff AM, Ng CY, Zhang Y, Streck CJ, Mabry SJ, Barton SH et al. Careful decoy receptor titering is required to inhibit tumor angiogenesis while avoiding adversely altering VEGF bioavailability. Mol Ther 2005; 11: 300–310.

    Article  CAS  PubMed  Google Scholar 

  25. Nathwani AC, Persons DA, Stevenson SC, Frare P, McClelland A, Nienhuis AW et al. Adenovirus-mediated expresssion of the murine ecotropic receptor facilitates transduction of human hematopoietic cells with an ecotropic retroviral vector. Gene Therapy 1999; 6: 1456–1468.

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM . Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 1999; 96: 3906–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiorini JA, Yang L, Liu Y, Safer B, Kotin RM . Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997; 71: 6823–6833.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fournier S, Delespesse G, Rubio M, Biron G, Sarfati M . CD23 antigen regulation and signaling in chronic lymphocytic leukemia. J Clin Invest 1992; 89: 1312–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogura T, Mizukami H, Mimuro J, Madoiwa S, Okada T, Matsushita T et al. Utility of intraperitoneal administration as a route of AAV serotype 5 vector-mediated neonatal gene transfer. J Gene Med 2006; 8: 990–997.

    Article  CAS  PubMed  Google Scholar 

  33. Sarkar R, Mucci M, Addya S, Tetreault R, Bellinger DA, Nichols TC et al. Long-term efficacy of adeno-associated virus serotypes 8 and 9 in hemophilia a dogs and mice. Hum Gene Ther 2006; 17: 427–439.

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Calcedo R, Nichols TC, Bellinger DA, Dillow A, Verma IM et al. Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood 2005; 105: 3079–3086.

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 2008; 16: 280–289.

    Article  PubMed  Google Scholar 

  36. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  37. Humeau LM, Binder GK, Lu X, Slepushkin V, Merling R, Echeagaray P et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 2004; 9: 902–913.

    Article  CAS  PubMed  Google Scholar 

  38. Davidoff AM, Ng CY, Sleep S, McIntosh J, Azam S, Zhao Y et al. Purification of recombinant adeno-associated virus type 8 vectors by ion exchange chromatography generates clinical grade vector stock. J Virol Methods 2004; 121: 209–215.

    Article  CAS  PubMed  Google Scholar 

  39. Nathwani AC, Davidoff AM, Hanawa H, Hu Y, Hoffer FA, Nikanorov A et al. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood 2002; 100: 1662–1669.

    Article  CAS  PubMed  Google Scholar 

  40. Nathwani AC, Hanawa H, Vandergriff J, Kelly P, Vanin EF, Nienhuis AW . Efficient gene transfer into human cord blood CD34+ cells and the CD34+CD38- subset using highly purified recombinant adeno-associated viral vector preparations that are free of helper virus and wild-type AAV. Gene Therapy 2000; 7: 183–195.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Arthur Nienhuis and Professor David Linch for critically reviewing this paper. We also thank Dr James Wilson for providing the AAV packaging plasmids. This work was supported by The Katharine Dormandy Trust, UK; Medical Research Council, UK; Department of Health's NIHR Biomedical Research Centres funding award to UCLH/UCL, UK; The ASSISI Foundation of Memphis; the American Lebanese Syrian Associated Charities (ALSAC); National Heart, Lung, and Blood Institute (NHLBI) grant HL073838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A C Nathwani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathwani, A., Cochrane, M., McIntosh, J. et al. Enhancing transduction of the liver by adeno-associated viral vectors. Gene Ther 16, 60–69 (2009). https://doi.org/10.1038/gt.2008.137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.137

Keywords

This article is cited by

Search

Quick links