Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-12 inhibits liver-specific drug-inducible systems in vivo

Abstract

Drug-inducible systems allow modulation of the duration and intensity of cytokine expression in liver immuno-based gene therapy protocols. However, the biological activity of the transgene may influence their function. We have analyzed the kinetics of interleukin-12 (IL-12) expression controlled by the doxycycline (Dox)- and the mifepristone (Mif)-dependent systems using two long-term expressing vectors directed to liver: a plasmid administered by hydrodynamic injection and a high-capacity adenoviral vector. Daily administration of Dox or Mif was associated with a progressive loss of inducibility and a decrease of murine IL-12 production. This inhibition occurred at the transcriptional level and was probably caused by an interferon (IFN)-γ-mediated downmodulation of liver-specific promoters that control the expression of transactivators in these systems. Genome-wide expression microarrays studies revealed a parallel downregulation of liver-specific genes in mice overexpressing murine IL-12. However, a promoter naturally induced by IL-12 was also inhibited by this cytokine when placed in a plasmid vector. Interestingly, treatment with sodium butyrate, a class I/II histone deacetylase inhibitor, was able to rescue liver-specific promoter activity solely in the vector. We conclude that biologically active IL-12 can transiently inhibit the function of drug-inducible systems in non-integrative DNA vectors by reducing promoter activity, probably through IFN-γ and protein deacetylation-dependent mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Prieto J, Qian C, Hernandez-Alcoceba R, Gonzalez-Aseguinolaza G, Mazzolini G, Sangro B et al. Gene therapy of liver diseases. Expert Opin Biol Ther 2004; 4: 1073–1091.

    Article  CAS  Google Scholar 

  2. Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 2004; 22: 1389–1397.

    Article  CAS  Google Scholar 

  3. Penuelas I, Mazzolini G, Boan JF, Sangro B, Marti-Climent J, Ruiz M et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 2005; 128: 1787–1795.

    Article  CAS  Google Scholar 

  4. Zabala M, Wang L, Hernandez-Alcoceba R, Hillen W, Qian C, Prieto J et al. Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 2004; 64: 2799–2804.

    Article  CAS  Google Scholar 

  5. Wang L, Hernandez-Alcoceba R, Shankar V, Zabala M, Kochanek S, Sangro B et al. Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 2004; 126: 278–289.

    Article  CAS  Google Scholar 

  6. Burcin MM, Schiedner G, Kochanek S, Tsai SY, O'Malley BW . Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci USA 1999; 96: 355–360.

    Article  CAS  Google Scholar 

  7. Aurisicchio L, De Tomassi A, La Monica N, Ciliberto G, Traboni C, Palombo F . Regulated and liver-specific tamarin alpha interferon gene delivery by a helper-dependent adenoviral vector. J Virol 2005; 79: 6772–6780.

    Article  CAS  Google Scholar 

  8. Brunda MJ, Luistro L, Hendrzak JA, Fountoulakis M, Garotta G, Gately MK . Role of interferon-gamma in mediating the antitumor efficacy of interleukin-12. J Immunother Emphasis Tumor Immunol 1995; 17: 71–77.

    Article  CAS  Google Scholar 

  9. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101: 6062–6067.

    Article  CAS  Google Scholar 

  10. Kramer MG, Barajas M, Razquin N, Berraondo P, Rodrigo M, Wu C et al. In vitro and in vivo comparative study of chimeric liver-specific promoters. Mol Ther 2003; 7: 375–385.

    Article  CAS  Google Scholar 

  11. Nagae Y, Muller-Eberhard U . Identification of an interleukin-6 responsive element and characterization of the proximal promoter region of the rat hemopexin gene. Biochem Biophys Res Commun 1992; 185: 420–429.

    Article  CAS  Google Scholar 

  12. Presky DH, Minetti LJ, Gillessen S, Wilkinson VL, Wu CY, Gubler U et al. Analysis of the multiple interactions between IL-12 and the high affinity IL-12 receptor complex. J Immunol 1998; 160: 2174–2179.

    CAS  PubMed  Google Scholar 

  13. Ramana CV, Gil MP, Schreiber RD, Stark GR . Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol 2002; 23: 96–101.

    Article  CAS  Google Scholar 

  14. Yu J, Wei M, Becknell B, Trotta R, Liu S, Boyd Z et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 2006; 24: 575–590.

    Article  CAS  Google Scholar 

  15. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  Google Scholar 

  16. Joseph J, Mudduluru G, Antony S, Vashistha S, Ajitkumar P, Somasundaram K . Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 2004; 23: 6304–6315.

    Article  CAS  Google Scholar 

  17. Yamano T, Ura K, Morishita R, Nakajima H, Monden M, Kaneda Y . Amplification of transgene expression in vitro and in vivo using a novel inhibitor of histone deacetylase. Mol Ther 2000; 1: 574–580.

    Article  CAS  Google Scholar 

  18. Ying M, Xu R, Wu X, Zhu H, Zhuang Y, Han M et al. Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 2006; 281: 12580–12586.

    Article  CAS  Google Scholar 

  19. Egorin MJ, Yuan ZM, Sentz DL, Plaisance K, Eiseman JL . Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemother Pharmacol 1999; 43: 445–453.

    Article  CAS  Google Scholar 

  20. Lui VW, Falo Jr LD, Huang L . Systemic production of IL-12 by naked DNA mediated gene transfer: toxicity and attenuation of transgene expression in vivo. J Gene Med 2001; 3: 384–393.

    Article  CAS  Google Scholar 

  21. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 2002; 99: 2995–3000.

    Article  CAS  Google Scholar 

  22. Leoni F, Fossati G, Lewis EC, Lee JK, Porro G, Pagani P et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 2005; 11: 1–15.

    Article  CAS  Google Scholar 

  23. Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 1989; 242: 237–239.

    Article  CAS  Google Scholar 

  24. Qian X, Samadani U, Porcella A, Costa RH . Decreased expression of hepatocyte nuclear factor 3 alpha during the acute-phase response influences transthyretin gene transcription. Mol Cell Biol 1995; 15: 1364–1376.

    Article  CAS  Google Scholar 

  25. Sung RS, Qin L, Bromberg JS . TNFalpha and IFNgamma induced by innate anti-adenoviral immune responses inhibit adenovirus-mediated transgene expression. Mol Ther 2001; 3: 757–767.

    Article  CAS  Google Scholar 

  26. Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS . Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    Article  CAS  Google Scholar 

  27. Marks PA, Richon VM, Miller T, Kelly WK . Histone deacetylase inhibitors. Adv Cancer Res 2004; 91: 137–168.

    Article  CAS  Google Scholar 

  28. Riu E, Chen ZY, Xu H, He CY, Kay MA . Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 2007; 15: 1348–1355.

    Article  CAS  Google Scholar 

  29. Dion LD, Goldsmith KT, Tang DC, Engler JA, Yoshida M, Garver Jr RI . Amplification of recombinant adenoviral transgene products occurs by inhibition of histone deacetylase. Virology 1997; 231: 201–209.

    Article  CAS  Google Scholar 

  30. Gorman CM, Howard BH, Reeves R . Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res 1983; 11: 7631–7648.

    Article  CAS  Google Scholar 

  31. Keslacy S, Tliba O, Baidouri H, Amrani Y . Inhibition of tumor necrosis factor-alpha-inducible inflammatory genes by interferon-gamma is associated with altered nuclear factor-kappaB transactivation and enhanced histone deacetylase activity. Mol Pharmacol 2007; 71: 609–618.

    Article  CAS  Google Scholar 

  32. Klampfer L, Huang J, Swaby LA, Augenlicht L . Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 2004; 279: 30358–30368.

    Article  CAS  Google Scholar 

  33. Nusinzon I, Horvath CM . Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci USA 2003; 100: 14742–14747.

    Article  CAS  Google Scholar 

  34. Chang HM, Paulson M, Holko M, Rice CM, Williams BR, Marie I et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci USA 2004; 101: 9578–9583.

    Article  CAS  Google Scholar 

  35. Ocker M, Alajati A, Ganslmayer M, Zopf S, Luders M, Neureiter D et al. The histone-deacetylase inhibitor SAHA potentiates proapoptotic effects of 5-fluorouracil and irinotecan in hepatoma cells. J Cancer Res Clin Oncol 2005; 131: 385–394.

    Article  CAS  Google Scholar 

  36. Takimoto R, Kato J, Terui T, Takada K, Kuroiwa G, Wu J et al. Augmentation of antitumor effects of p53 gene therapy by combination with HDAC inhibitor. Cancer Biol Ther 2005; 4: 421–428.

    Article  CAS  Google Scholar 

  37. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, Wilson JM, Schmieg J, Kronenberg M et al. Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 2002; 195: 617–624.

    Article  CAS  Google Scholar 

  38. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    Article  CAS  Google Scholar 

  39. Crettaz J, Berraondo P, Mauleon I, Ochoa L, Shankar V, Barajas M et al. Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice. Hepatology 2006; 44: 623–632.

    Article  CAS  Google Scholar 

  40. Berasain C, Garcia-Trevijano ER, Castillo J, Erroba E, Santamaria M, Lee DC et al. Novel role for amphiregulin in protection from liver injury. J Biol Chem 2005; 280: 19012–19020.

    Article  CAS  Google Scholar 

  41. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  Google Scholar 

  42. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  Google Scholar 

  43. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  44. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125: 279–284.

    Article  CAS  Google Scholar 

  45. Murtagh F . Multidimensional clustering algorithms. COMPSTAT Lectures 4. Physica-Verlag: Wuerzburg, 1985, pp 131.

    Google Scholar 

Download references

Acknowledgements

We thank Gloria Gonzalez-Aseguinolaza (Division Hepatology and Gene Therapy, University of Navarra, Spain) for the IFN-γ R−/− knockout mice. We appreciate scientific feedback obtained from Ricky Johnstone (Peter MacCallum Cancer Centre, Australia) and Howard Young (National Cancer Institute, USA). This project was founded through the UTE project CIMA, DIGNA Biotech and Grants from Education Department, Gobierno de Navarra and Fondo de Investigacion Sanitaria (FIS) and CIBERehd. RHA is a recipient of Ramon y Cajal research contract. MGK is a recipient of an FIS research contract. IM is a recipient of a Torres Quevedo contract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Hernandez-Alcoceba or M G Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reboredo, M., Zabala, M., Mauleon, I. et al. Interleukin-12 inhibits liver-specific drug-inducible systems in vivo. Gene Ther 15, 277–288 (2008). https://doi.org/10.1038/sj.gt.3303073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303073

Keywords

This article is cited by

Search

Quick links