Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy

Abstract

Autosomal recessive Stargardt disease (STGD1) is a macular dystrophy caused by mutations in the ABCA4 (ABCR) gene. The disease phenotype that is most recognized in STGD1 patients, and also in the Abca4−/− mouse (a disease model), is lipofuscin accumulation in retinal pigment epithelium. Here, we tested whether delivery of the normal (wt) human ABCA4 gene to the subretinal space of the Abca4−/− mice via lentiviral vectors would correct the disease phenotype; that is, reduce accumulation of the lipofuscin pigment A2E. Equine infectious anemia virus (EIAV)-derived lentiviral vectors were constructed expressing either the human ABCA4 gene or the LacZ reporter gene under the control of the constitutive (CMV) or photoreceptor-specific (Rho) promoters. Abca4−/− mice were injected subretinally with 1 μl (5.0 × 105 TU) of each EIAV vector in one eye at postnatal days 4 and 5. An injection of saline, an EIAV-null vector, or an uninjected contralateral eye served as a control. Mice were killed at various times after injection to determine photoreceptor (PR) transduction efficiency and A2E concentrations. EIAV-LacZ vectors transduced from 5 to 20% of the PRs in the injected area in mice. Most importantly, a single subretinal injection of EIAV-CMV-ABCA4 to Abca4−/− mouse eyes substantially reduced disease-associated A2E accumulation compared to untreated and mock-treated control eyes. Treated eyes of Abca4−/− mice accumulated 8–12 pmol per eye (s.d.=2.7) of A2E 1 year after treatment, amounts comparable to wt controls, whereas mock-treated or untreated eyes had 3–5 times more A2E (27–39 pmol per eye, s.d.=1.5; P=0.001–0.005). Although extrapolation to humans requires caution, the high transduction efficiency of both rod and cone photoreceptors and the statistically significant reduction of A2E accumulation in the mouse model of STGD1 suggest that lentiviral gene therapy is a potentially efficient tool for treating ABCA4-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 6
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Blacharski P . Retinal dystrophies and degenerations. In: Newsome DA (ed). Raven Press: New York, 1988, pp 135–159.

  2. Anderson KL, Baird L, Lewis RA, Chinault AC, Otterud B, Leppert M et al. A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am J Hum Genet 1995; 57: 1351–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stargardt K . Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albrecht von Graefes Arch Ophthalmol 1909; 71: 534–550.

    Article  Google Scholar 

  4. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997a; 15: 236–246.

    Article  CAS  PubMed  Google Scholar 

  5. Azarian SM, Travis GH . The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR). FEBS Lett 1997; 409: 247–252.

    Article  CAS  PubMed  Google Scholar 

  6. Illing M, Molday LL, Molday RS . The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 1997; 272: 10303–10310.

    Article  CAS  PubMed  Google Scholar 

  7. Cremers FP, van de Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Hum Mol Genet 1998; 7: 355–362.

    Article  CAS  PubMed  Google Scholar 

  8. Rozet JM, Gerber S, Souied E, Perrault I, Chatelin S, Ghazi I et al. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 1998; 6: 291–295.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M et al. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 1998; 18: 11–12.

    Article  CAS  PubMed  Google Scholar 

  10. Rozet JM, Gerber S, Ghazi I, Perrault I, Ducroq D, Souied E et al. Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of clinical heterogeneity at this locus. J Med Genet 1999; 36: 447–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y et al. Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 1999; 64: 422–434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Maugeri A, van Driel MA, van de Pol DJ, Klevering BJ, van Haren FJ, Tijmes N et al. The 2588G → C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet 1999; 64: 1024–1035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fishman GA, Stone EM, Grover S, Derlacki DJ, Haines HL, Hockey RR . Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol 1999; 117: 504–510.

    Article  CAS  PubMed  Google Scholar 

  14. Fumagalli A, Ferrari M, Soriani N, Gessi A, Foglieni B, Martina E et al. Mutational scanning of the ABCR gene with double-gradient denaturing-gradient gel electrophoresis (DG-DGGE) in Italian Stargardt disease patients. Hum Genet 2001; 109: 326–338.

    Article  CAS  PubMed  Google Scholar 

  15. Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 2000; 67: 800–813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR . Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet 2001; 108: 346–355.

    Article  CAS  PubMed  Google Scholar 

  17. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat 2003; 22: 395–403.

    Article  CAS  PubMed  Google Scholar 

  18. Papermaster DS, Converse CA, Zorn M . Biosynthetic and immunochemical characterization of large protein in frog and cattle rod outer segment membranes. Exp Eye Res 1976; 23: 105–115.

    Article  CAS  PubMed  Google Scholar 

  19. Papermaster DS, Schneider BG, Zorn MA, Kraehenbuhl JP . Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol 1978; 78: 415–425.

    Article  CAS  PubMed  Google Scholar 

  20. Sun H, Molday RS, Nathans J . Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 1999; 274: 8269–8281.

    Article  CAS  PubMed  Google Scholar 

  21. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH . Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 1999; 98: 13–23.

    Article  CAS  PubMed  Google Scholar 

  22. Beharry S, Zhong M, Molday RS . N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 2004; 279: 53972–53979.

    Article  CAS  PubMed  Google Scholar 

  23. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K . A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 1999; 40: 2988–2995.

    CAS  PubMed  Google Scholar 

  24. Fishkin N, Jang YP, Itagaki Y, Sparrow JR, Nakanishi K . A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 2003; 1: 1101–1105.

    Article  CAS  PubMed  Google Scholar 

  25. Sparrow JR . RPE lipofuscin: formation, properties and relevance to retinal degeneration. In: Tombran-Tink J, Barnstable CJ (eds). Retinal Degenerations: Biology, Diagnostics and Therapeutics. Humana Press: Totowa, NJ, 2007, pp 213–236.

    Chapter  Google Scholar 

  26. Allikmets R . Stargardt disease: from gene discovery to therapy. In: Tombran-Tink J, Barnstable CJ (eds). Retinal Degenerations: Biology, Diagnostics and Therapeutics. Humana Press: Totowa, NJ, 2007, pp 105–118.

    Chapter  Google Scholar 

  27. Allocca M, Tessitore A, Cotugno G, Auricchio A . AAV-mediated gene transfer for retinal diseases. Expert Opin Biol Ther 2006; 6: 1279–1294.

    Article  CAS  PubMed  Google Scholar 

  28. Campochiaro PA . Gene therapy for retinal and choroidal diseases. Expert Opin Biol Ther 2002; 2: 537–544.

    Article  CAS  PubMed  Google Scholar 

  29. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  30. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Therapy 2007; 14: 292–303.

    Article  CAS  PubMed  Google Scholar 

  31. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  32. Bemelmans AP, Kostic C, Crippa SV, Hauswirth WW, Lem J, Munier FL et al. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med 2006; 3: e347.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, Savchenko A et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9: 182–188.

    Article  CAS  PubMed  Google Scholar 

  34. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  PubMed  Google Scholar 

  35. Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L, Pang J et al. Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLoS Med 2005; 2: e333.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Gouze E, Pawliuk R, Gouze JN, Pilapil C, Fleet C, Palmer GD et al. Lentiviral-mediated gene delivery to synovium: potent intra-articular expression with amplification by inflammation. Mol Ther 2003; 7: 460–466.

    Article  CAS  PubMed  Google Scholar 

  37. Kostic C, Chiodini F, Salmon P, Wiznerowicz M, Deglon N, Hornfeld D et al. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Therapy 2003; 10: 818–821.

    Article  CAS  PubMed  Google Scholar 

  38. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D . Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–872.

    Article  CAS  PubMed  Google Scholar 

  39. Kingsman SM . Lentivirus: a vector for nervous system applications. Ernst Schering Res Found Workshop 2003; 43: 179–207.

    CAS  Google Scholar 

  40. Miyoshi H, Takahashi M, Gage FH, Verma IM . Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997; 94: 10319–10323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Takahashi M, Miyoshi H, Verma IM, Gage FH . Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73: 7812–7816.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gruter O, Kostic C, Crippa SV, Perez MT, Zografos L, Schorderet DF et al. Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier. Gene Therapy 2005; 12: 942–947.

    Article  CAS  PubMed  Google Scholar 

  43. Lem J, Applebury ML, Falk JD, Flannery JG, Simon MI . Tissue-specific and developmental regulation of rod opsin chimeric genes in transgenic mice. Neuron 1991; 6: 201–210.

    Article  CAS  PubMed  Google Scholar 

  44. Zack DJ, Bennett J, Wang Y, Davenport C, Klaunberg B, Gearhart J et al. Unusual topography of bovine rhodopsin promoter-lacZ fusion gene expression in transgenic mouse retinas. Neuron 1991; 6: 187–199.

    Article  CAS  PubMed  Google Scholar 

  45. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR . Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci USA 2004; 101: 11668–11672.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J . Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 1998; 95: 14609–14613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH . Delayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001; 42: 1685–1690.

    CAS  PubMed  Google Scholar 

  48. Radu RA, Han Y, Bui TV, Nusinowitz S, Bok D, Lichter J et al. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 2005; 46: 4393–4401.

    Article  PubMed  Google Scholar 

  49. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH . Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt's macular degeneration. Proc Natl Acad Sci USA 2003; 100: 4742–4747.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Maiti P, Kong J, Kim SR, Sparrow JR, Allikmets R, Rando RR . Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 2006; 45: 852–860.

    Article  CAS  PubMed  Google Scholar 

  51. Sieving PA, Chaudhry P, Kondo M, Provenzano M, Wu D, Carlson TJ et al. Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc Natl Acad Sci USA 2001; 98: 1835–1840.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. LaVail MM, Unoki K, Yasumura D, Matthes MT, Yancopoulos GD, Steinberg RH . Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA 1992; 89: 11249–11253.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  54. Hacker CV, Vink CA, Wardell TW, Lee S, Treasure P, Kingsman SM et al. The integration profile of EIAV-based vectors. Mol Ther 2006; 14: 536–545.

    Article  CAS  PubMed  Google Scholar 

  55. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  56. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  PubMed  Google Scholar 

  57. Wong LF, Ralph GS, Walmsley LE, Bienemann AS, Parham S, Kingsman SM et al. Lentiviral-mediated delivery of Bcl-2 or GDNF protects against excitotoxicity in the rat hippocampus. Mol Ther 2005; 11: 89–95.

    Article  CAS  PubMed  Google Scholar 

  58. Yee J, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T . A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 1994; 91: 9564–9568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr SP Goff, Dr EA Pierce, Dr I Verma, Dr P Leboulch, Dr R Pawliuk, Dr S Rose, Dr C Barber, Dr T Nagasaki and Dr T Schoen for helpful discussions. We are also grateful to Dr J Nathans, Dr H Sun, Dr R Pawliuk and Dr RS Molday for valuable reagents and advice. This work was supported in part by funds from Foundation Fighting Blindness, National Neurovision Research Institute, Manning Family Foundation, Mr and Mrs Michael Schneeweiss, NIH EY13435 (RA), EY12951 (JRS) and unrestricted grant to the Department of Ophthalmology, Columbia University from Research to Prevent Blindness Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Allikmets.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, J., Kim, SR., Binley, K. et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15, 1311–1320 (2008). https://doi.org/10.1038/gt.2008.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.78

Keywords

This article is cited by

Search

Quick links