Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells

Abstract

We recently demonstrated that noninvasive food-grade Lactococcus lactis (L. lactis) can deliver eukaryotic expression plasmid in mammalian cells in vitro. Here, we evaluated, in vivo, whether a eukaryotic expression plasmid carried by lactococci can translocate to the epithelial cells of the intestinal membrane. The strain LL(pLIG:BLG1) carrying one plasmid containing a eukaryotic expression cassette encoding β-lactoglobulin (BLG), a major allergen of cow's milk, was orally administered by gavage to mice. BLG cDNA was detected in the epithelial membrane of the small intestine of 40% of the mice and BLG was produced in 53% of the mice. Oral administration of LL(pLIG:BLG1) induced a low and transitory Th1-type immune response counteracting a Th2 response in case of further sensitization. We demonstrated for the first time the transfer of a functional plasmid to the epithelial membrane of the small intestine in mice by noninvasive food-grade lactococci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

LL:

Lactococcus lactis MG1363

PBS:

phosphate buffer saline

EIA:

enzyme immuno assay

References

  1. Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J et al. Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 2004; 56: 1–64.

    Article  PubMed  Google Scholar 

  2. Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC et al. Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2003; 2: 102–111.

    PubMed  Google Scholar 

  3. Guimaraes VD, Innocentin S, Lefevre F, Azevedo V, Wal JM, Langella P et al. Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl Environ Microbiol 2006; 72: 7091–7097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schoen C, Stritzker J, Goebel W, Pilgrim S . Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004; 294: 319–335.

    Article  CAS  PubMed  Google Scholar 

  5. Dunham SP . The application of nucleic acid vaccines in veterinary medicine. Res Vet Sci 2002; 73: 9–16.

    Article  CAS  PubMed  Google Scholar 

  6. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P . Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 1991; 65: 1127–1141.

    Article  CAS  PubMed  Google Scholar 

  7. Isberg RR, Falkow S . A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 1985; 317: 262–264.

    Article  CAS  PubMed  Google Scholar 

  8. Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P . Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998; 16: 862–866.

    Article  CAS  PubMed  Google Scholar 

  9. Guimaraes VD, Gabriel JE, Lefevre F, Cabanes D, Gruss A, Cossart P et al. Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect 2005; 7: 836–844.

    Article  CAS  PubMed  Google Scholar 

  10. Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P . Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 1997; 65: 5309–5319.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaffner W . Direct transfer of cloned genes from bacteria to mammalian cells. Proc Natl Acad Sci USA 1980; 77: 2163–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cicin-Sain L, Brune W, Bubic I, Jonjic S, Koszinowski UH . Vaccination of mice with bacteria carrying a cloned herpesvirus genome reconstituted in vivo. J Virol 2003; 77: 8249–8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiau AL, Chu CY, Su WC, Wu CL . Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses. Vaccine 2001; 19: 3277–3284.

    Article  CAS  PubMed  Google Scholar 

  14. Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C et al. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 2004; 126: 1358–1373.

    Article  CAS  PubMed  Google Scholar 

  15. Obermeier F, Dunger N, Strauch UG, Hofmann C, Bleich A, Grunwald N et al. CpG motifs of bacterial DNA essentially contribute to the perpetuation of chronic intestinal inflammation. Gastroenterology 2005; 129: 913–927.

    Article  CAS  PubMed  Google Scholar 

  16. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004; 126: 520–528.

    Article  CAS  PubMed  Google Scholar 

  17. Palka-Santini M, Schwarz-Herzke B, Hosel M, Renz D, Auerochs S, Brondke H et al. The gastrointestinal tract as the portal of entry for foreign macromolecules: fate of DNA and proteins. Mol Genet Genomics 2003; 270: 201–215.

    Article  CAS  PubMed  Google Scholar 

  18. Hohlweg U, Doerfler W . On the fate of plant or other foreign genes upon the uptake in food or after intramuscular injection in mice. Mol Genet Genomics 2001; 265: 225–233.

    Article  CAS  PubMed  Google Scholar 

  19. Schubbert R, Hohlweg U, Renz D, Doerfler W . On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus. Mol Gen Genet 1998; 259: 569–576.

    Article  CAS  PubMed  Google Scholar 

  20. Niswender KD, Blackman SM, Rohde L, Magnuson MA, Piston DW . Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microsc 1995; 180 (Part 2): 109–116.

    Article  CAS  PubMed  Google Scholar 

  21. Negroni L, Bernard H, Clement G, Chatel JM, Brune P, Frobert Y et al. Two-site enzyme immunometric assays for determination of native and denatured beta-lactoglobulin. J Immunol Methods 1998; 220: 25–37.

    Article  CAS  PubMed  Google Scholar 

  22. Drouault S, Corthier G, Ehrlich SD, Renault P . Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 1999; 65: 4881–4886.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rochat T, Gratadoux JJ, Corthier G, Coqueran B, Nader-Macias ME, Gruss A et al. Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 2005; 71: 2782–2788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilcks A, van Hoek AH, Joosten RG, Jacobsen BB, Aarts HJ . Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation. Food Chem Toxicol 2004; 42: 493–502.

    Article  CAS  PubMed  Google Scholar 

  25. Hazebrouck S, Pothelune L, Azevedo V, Corthier G, Wal JM, Langella P . Efficient production and secretion of bovine beta-lactoglobulin by Lactobacillus casei. Microb Cell Fact 2007; 6: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chatel JM, Adel-Patient K, Creminon C, Wal JM . Expression of a lipocalin in prokaryote and eukaryote cells: quantification and structural characterization of recombinant bovine beta-lactoglobulin. Protein Expr Purif 1999; 16: 70–75.

    Article  CAS  PubMed  Google Scholar 

  27. Stappenbeck TS, Wong MH, Saam JR, Mysorekar IU, Gordon JI . Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium. Curr Opin Cell Biol 1998; 10: 702–709.

    Article  CAS  PubMed  Google Scholar 

  28. Adel-Patient K, Ah-Leung S, Creminon C, Nouaille S, Chatel JM, Langella P et al. Oral administration of recombinant Lactococcus lactis expressing bovine beta-lactoglobulin partially prevents mice from sensitization. Clin Exp Allergy 2005; 35: 539–546.

    Article  CAS  PubMed  Google Scholar 

  29. Chatel JM, Langella P, Adel-Patient K, Commissaire J, Wal JM, Corthier G . Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol 2001; 8: 545–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Borrego B, Fernandez-Pacheco P, Ganges L, Domenech N, Fernandez-Borges N, Sobrino F et al. DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses. Vaccine 2006; 24: 3889–3899.

    Article  CAS  PubMed  Google Scholar 

  31. Foligne B, Zoumpopoulou G, Dewulf J, Ben Younes A, Chareyre F, Sirard JC et al. A key role of dendritic cells in probiotic functionality. PLoS ONE 2007; 2: e313.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, Warfield KL et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci USA 2005; 102: 2880–2885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Macpherson AJ, Uhr T . Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303: 1662–1665.

    Article  CAS  PubMed  Google Scholar 

  34. Simon D, Chopin A . Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 1988; 70: 559–566.

    Article  CAS  PubMed  Google Scholar 

  35. Chatel JM, Adel-Patient K, Creminon C, Wal JM . Expression of a lipocalin in prokaryote and eukaryote cells: quantification and structural characterization of recombinant bovine beta-lactoglobulin. Protein Expr Purif 1999; 16: 70–75.

    Article  CAS  PubMed  Google Scholar 

  36. Gasson MJ . Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 1983; 154: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Langella P, Le Loir Y, Ehrlich SD, Gruss A . Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J Bacteriol 1993; 175: 5806–5813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adel-Patient K, Bernard H, Ah-Leung S, Creminon C, Wal JM . Peanut- and cow's milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy 2005; 60: 658–664.

    Article  CAS  PubMed  Google Scholar 

  39. Eum SY, Haile S, Lefort J, Huerre M, Vargaftig BB . Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci USA 1995; 92: 12290–12294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adel-Patient K, Creminon C, Bernard H, Clement G, Negroni L, Frobert Y et al. Evaluation of a high IgE-responder mouse model of allergy to bovine beta-lactoglobulin (BLG): development of sandwich immunoassays for total and allergen-specific IgE, IgG1 and IgG2a in BLG-sensitized mice. J Immunol Methods 2000; 235: 21–32.

    Article  CAS  PubMed  Google Scholar 

  41. Ellman GL . The biuret reaction: changes in the ultraviolet absorption spectra and its application to the determination of peptide bonds. Anal Biochem 1962; 3: 40–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luis Bermudez Humaran for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-M Chatel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatel, JM., Pothelune, L., Ah-Leung, S. et al. In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther 15, 1184–1190 (2008). https://doi.org/10.1038/gt.2008.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.59

Keywords

This article is cited by

Search

Quick links