Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tissue-specific restriction of cyclophilin A-independent HIV-1- and SIV-derived lentiviral vectors

Abstract

The host factor α isoform of the tripartite motif 5 (TRIM5α) restricts human immunodeficiency virus type 1 (HIV-1) infection in certain non-human primate species. Restriction of HIV-1 is enhanced by binding of the viral capsid to cyclophilin A (CypA) in target cells, although CypA is not absolutely required for restriction in rhesus macaque cells. Simian immunodeficiency virus (SIV) is not restricted by rhesus macaque TRIM5α and its capsid does not bind to CypA. Here, the effect of lentiviral CypA dependence on restriction in different tissues was examined by engineering an HIV-1 capsid quadruple mutant (V86P/H87Q/I91V/M96I) lentiviral vector (HIVquad) that is CypA-independent. Whereas HIV-1 was restricted in rhesus macaque and owl monkey epithelial cells, infection with the HIVquad vector was efficient at high viral concentrations. In contrast, HIVquad was largely restricted in primary rhesus macaque CD34+ cells. Human epithelial and primary CD34+ cells were permissive for HIV-1, HIVquad and SIV, whereas transduction of human T cells by HIVquad or SIV was impaired. The restrictive human cells did not express increased levels of TRIM5α, and restriction was not relieved by abolishing CypA, consistent with HIVquad and SIV being CypA-independent. Pseudotyping of lentiviral vectors with the gibbon ape leukemia virus envelope altered their sensitivity to perturbations of the virus–CypA interaction compared to pseudotyping with vesicular stomatitis virus glycoproteins, suggesting that the viral entry pathway modulates restriction. Together, these studies reveal that an HIV-1 capsid quadruple mutant can partially overcome lentiviral restriction in non-human primate epithelial cells, but not in hematopoietic cells. Similarly, human cells vary in their permissiveness for CypA-independent lentiviruses, and suggest the presence of tissue-specific factor(s) that can inhibit lentiviral transduction independently of viral interaction with TRIM5α and CypA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J . The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 2004; 427: 848–853.

    Article  CAS  PubMed  Google Scholar 

  2. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20: 2140–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nisole S, Stoye JP, Saïb A . TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3: 799–808.

    Article  CAS  PubMed  Google Scholar 

  4. Stremlau M, Perron M, Welikala S, Sodroski J . Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 2005; 79: 3139–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Owens CM, Yang PC, Göttlinger H, Sodroski J . Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 2003; 77: 726–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 2006; 103: 5514–5519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stremlau M, Song B, Javanbakht H, Perron M, Sodroski J . Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology 2006; 351: 112–120.

    Article  CAS  PubMed  Google Scholar 

  8. Keckesova Z, Ylinen LMJ, Towers GJ . Cyclophilin A renders human immunodeficieny virus type 1 sensitive to old world monkey but not human TRIM5alpha antiviral activity. J Virol 2006; 80: 4683–4690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sayah DM, Sokolskaja E, Berthoux L, Luban J . Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 2004; 430: 569–573.

    Article  CAS  PubMed  Google Scholar 

  10. Ylinen LMJ, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ . Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol 2005; 79: 11580–11587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD . Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 2002; 99: 11914–11919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitz C, Marchant D, Neil S, Aubin K, Reuter S, Dittmar M et al. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J Virol 2004; 78: 2006–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pineda MJ, Orton BR, Overbaugh J . A TRIM5alpha-independent post-entry restriction to HIV-1 infection of macaque cells that is dependent on the path of entry. Virology 2007; 363: 310–318.

    Article  CAS  PubMed  Google Scholar 

  14. Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD . Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 2004; 101: 10774–10779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sokolskaja E, Berthoux L, Luban J . Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol 2006; 80: 2855–2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD . Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 2003; 9: 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  17. Chatterji U, Bobardt MD, Stanfield R, Ptak RG, Pallansch LA, Ward PA et al. Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in owl monkey cells. J Biol Chem 2005; 280: 40293–40300.

    Article  CAS  PubMed  Google Scholar 

  18. Kahl CA, Tarantal AF, Lee CI, Jimenez DF, Choi C, Pepper K et al. Effects of busulfan dose escalation on engraftment of infant rhesus monkey hematopoietic stem cells after gene marking by a lentiviral vector. Exp Hematol 2005; 34: 369–381.

    Article  Google Scholar 

  19. Matlin KS, Reggio H, Helenius A, Simons K . Pathway of vesicular stomatitis virus entry leading to infection. J Mol Biol 1982; 156: 609–631.

    Article  CAS  PubMed  Google Scholar 

  20. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G et al. Stable transduction of quiescent CD34+CD38− human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 1999; 96: 2988–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haas DL, Case SS, Crooks GM, Kohn DB . Critical factors influencing stable transduction of human CD34+ cells with HIV-1-derived lentiviral vectors. Mol Ther 2000; 2: 71–80.

    Article  CAS  PubMed  Google Scholar 

  22. Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD . Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol 2005; 79: 176–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kootstra NA, Munk C, Tonnu N, Landau NR, Verma IM . Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc Natl Acad Sci USA 2003; 100: 1298–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mangeot P-E, Nègre D, Dubois B, Winter AJ, Leissner P, Mehtali M et al. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 2000; 74: 8307–8315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, Donahue R et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 2004; 103: 4062–4069.

    Article  CAS  PubMed  Google Scholar 

  26. Marchant D, Neil S, Aubin K, Schmitz C, McKnight A . An envelope-determined, pH-independent endocytic route of viral entry determines the susceptibility of human immunodeficiency virus type 1 (HIV-1) and HIV-2 to Lv2 restriction. J Virol 2005; 79: 9410–9418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song C, Aiken C . Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant. J Virol 2007; 81: 11946–11956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sokolskaja E, Sayah DM, Luban J . Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 2004; 78: 12800–12808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kahl CA, Marsh J, Fyffe J, Sanders DA, Cornetta K . Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J Virol 2004; 78: 1421–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tarantal AF, Goldstein O, Barley F, Cowan MJ . Transplantation of human peripheral blood stem cells into fetal rhesus monkeys (Macaca mulatta). Transplantation 2000; 69: 1818–1823.

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez DF, Leapley AC, Lee CL, Ultsch M-N, Tarantal AF . Fetal CD34+ cells in the maternal circulation and long-term microchimerism in rhesus monkeys (Macaca mulatta). Transplantation 2005; 79: 142–146.

    Article  PubMed  Google Scholar 

  33. Lee CL, Fletcher M, Tarantal AF . Effects of age on the frequency, cell cycle, and lineage maturation of rhesus monkey (Macaca mulatta) CD34+ and hematopoietic progenitor cells. Pediatr Res 2005; 58: 315–322.

    Article  PubMed  Google Scholar 

  34. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM . A functional comparison of CD34+ CD38− cells in cord blood and bone marrow. Blood 1995; 86: 3745–3753.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Paul Bieniasz for providing the pLNCX-TRIM5αRhe plasmid and Arthur Nienhuis for supplying the SIVmac1A11-derived vector plasmids. These studies were supported by NIH Grants AI52798 (DBK) and HL069748 (AFT) and the Primate Center base operating grant RR00169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D B Kohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahl, C., Cannon, P., Oldenburg, J. et al. Tissue-specific restriction of cyclophilin A-independent HIV-1- and SIV-derived lentiviral vectors. Gene Ther 15, 1079–1089 (2008). https://doi.org/10.1038/gt.2008.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.50

Keywords

This article is cited by

Search

Quick links