Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of local and systemic viral interleukin-10 gene transfer on corneal allograft survival

Abstract

In this study, we explored the immunomodulatory effects of viral interleukin (IL) IL-10 after ex vivo and in vivo gene transfer in experimental corneal transplantation. Wistar–Furth rats were used as donors and major histocompatibility complex class I/II-disparate Lewis rats served as recipients. For ex vivo gene therapy donor corneas were either transfected with liposome/vIL-10 plasmid DNA mixtures or transduced with a vIL-10 expressing adenovirus vector (AdvIL-10). For in vivo studies, recipients were treated with AdvIL-10 intraperitoneally 1 day before transplantation. Graft survival was analysed using the Kaplan–Meier survival method. To monitor the efficacy of the therapy messenger RNA (mRNA) cytokine expression profiles in grafts and draining lymph nodes were analysed by quantitative real-time reverse transcription-polymerase chain reaction. Moreover, anti-adenovirus immunity was also investigated. Neither ex vivo liposome-mediated vIL-10 gene transfer nor ex vivo AdvIL-10 gene transfer led to prolonged corneal allograft survival. In contrast, corneal allograft survival was significantly prolonged in animals receiving systemic AdvIL-10 gene transfer. Moreover, only systemic vIL-10 gene therapy modulated the cytokine mRNA expression profile in draining lymph nodes. Interestingly, systemic AdvIL-10 gene transfer could not inhibit the generation of anti-adenovirus antibodies. Our data indicate systemic expression of the vIL-10 gene is required to modulate the cytokine expression profile in the draining lymph nodes, which might be a pre-requisite for the success of cytokine gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Williams KA, Muehlberg SM, Lewis RF, Coster DJ . Long-term outcome in corneal allotransplantation. The Australian Corneal Graft Registry. Transplant Proc 1997; 29: 983.

    Article  CAS  PubMed  Google Scholar 

  2. Pleyer U, Dannowski H, Volk HD, Ritter T . Corneal allograft rejection: current understanding. I. Immunobiology and basic mechanisms. Ophthalmologica 2001; 215: 254–262.

    Article  CAS  PubMed  Google Scholar 

  3. George AJ, Larkin DF . Corneal transplantation: the forgotten graft. Am J Transplant 2004; 4: 678–685.

    Article  CAS  PubMed  Google Scholar 

  4. Torres PF, De Vos AF, van der Gaag R, Martins B, Kijlstra A . Cytokine mRNA expression during experimental corneal allograft rejection. Exp Eye Res 1996; 63: 453–461.

    Article  CAS  PubMed  Google Scholar 

  5. Sano Y, Osawa H, Sotozono C, Kinoshita S . Cytokine expression during orthotopic corneal allograft rejection in mice. Invest Ophthalmol Vis Sci 1998; 39: 1953–1957.

    CAS  PubMed  Google Scholar 

  6. Yamada J, Yoshida M, Taylor AW, Streilein JW . Mice with Th2-biased immune systems accept orthotopic corneal allografts placed in ‘high risk’ eyes. J Immunol 1999; 162: 5247–5255.

    CAS  PubMed  Google Scholar 

  7. King WJ, Comer RM, Hudde T, Larkin DF, George AJ . Cytokine and chemokine expression kinetics after corneal transplantation. Transplantation 2000; 70: 1225–1233.

    Article  CAS  PubMed  Google Scholar 

  8. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

  9. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE . Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991; 174: 1209–1220.

    Article  CAS  PubMed  Google Scholar 

  10. de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991; 174: 915–924.

    Article  CAS  PubMed  Google Scholar 

  11. Ralph P, Nakoinz I, Sampson-Johannes A, Fong S, Lowe D, Min HY et al. IL-10, T lymphocyte inhibitor of human blood cell production of IL-1 and tumor necrosis factor. J Immunol 1992; 148: 808–814.

    CAS  PubMed  Google Scholar 

  12. Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G . Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med 1993; 178: 2207–2211.

    Article  CAS  PubMed  Google Scholar 

  13. Qin L, Ding Y, Pahud DR, Robson ND, Shaked A, Bromberg JS . Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther 1997; 8: 1365–1374.

    Article  CAS  PubMed  Google Scholar 

  14. Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS . A single amino acid determines the immunostimulatory activity of interleukin 10. J Exp Med 2000; 191: 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. David A, Chetritt J, Guillot C, Tesson L, Heslan JM, Cuturi MC et al. Interleukin-10 produced by recombinant adenovirus prolongs survival of cardiac allografts in rats. Gene Therapy 2000; 7: 505–510.

    Article  CAS  PubMed  Google Scholar 

  16. Brauner R, Nonoyama M, Laks H, Drinkwater Jr DC, McCaffery S, Drake T et al. Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes prolongs allograft survival. J Thorac Cardiovasc Surg 1997; 114: 923–933.

    Article  CAS  PubMed  Google Scholar 

  17. DeBruyne LA, Li K, Chan SY, Qin L, Bishop DK, Bromberg JS . Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses. Gene Therapy 1998; 5: 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  18. Klebe S, Sykes PJ, Coster DJ, Krishnan R, Williams KA . Prolongation of sheep corneal allograft survival by ex vivo transfer of the gene encoding interleukin-10. Transplantation 2001; 71: 1214–1220.

    Article  CAS  PubMed  Google Scholar 

  19. Bertelmann E, Ritter T, Vogt K, Reszka R, Hartmann C, Pleyer U . Efficiency of cytokine gene transfer in corneal endothelial cells and organ-cultured corneas mediated by liposomal vehicles and recombinant adenovirus. Ophthalmic Res 2003; 35: 117–124.

    Article  CAS  PubMed  Google Scholar 

  20. Pleyer U, Dannowski H . Delivery of genes via liposomes to corneal endothelial cells. Drug News Perspect 2002; 15: 283–289.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  23. Ritter T, Lehmann M, Volk HD . Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 2002; 16: 3–10.

    Article  CAS  PubMed  Google Scholar 

  24. Pleyer U, Bertelmann E, Rieck P, Hartmann C, Volk HD, Ritter T . Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4. Graefes Arch Clin Exp Ophthalmol 2000; 238: 531–536.

    Article  CAS  PubMed  Google Scholar 

  25. Comer RM, King WJ, Ardjomand N, Theoharis S, George AJ, Larkin DF . Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest Ophthalmol Vis Sci 2002; 43: 1095–1103.

    PubMed  Google Scholar 

  26. Gong N, Pleyer U, Yang J, Vogt K, Hill M, Anegon I et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med 2006; 8: 459–467.

    Article  CAS  PubMed  Google Scholar 

  27. Konig Merediz SA, Zhang EP, Wittig B, Hoffmann F . Ballistic transfer of minimalistic immunologically defined expression constructs for IL4 and CTLA4 into the corneal epithelium in mice after orthotopic corneal allograft transplantation. Graefes Arch Clin Exp Ophthalmol 2000; 238: 701–707.

    Article  CAS  PubMed  Google Scholar 

  28. Klebe S, Coster DJ, Sykes PJ, Swinburne S, Hallsworth P, Scheerlinck JP et al. Prolongation of sheep corneal allograft survival by transfer of the gene encoding ovine IL-12-p40 but not IL-4 to donor corneal endothelium. J Immunol 2005; 175: 2219–2226.

    Article  CAS  PubMed  Google Scholar 

  29. Pleyer U . Immunobiology and Prevention of Allograft Reaction after Experimental Keratoplasty. Aeolus Press: Buren, Netherlands, 1996, pp 22–23.

    Google Scholar 

  30. Ardjomand N, McAlister JC, Rogers NJ, Tan PH, George AJ, Larkin DF . Modulation of costimulation by CD28 and CD154 alters the kinetics and cellular characteristics of corneal allograft rejection. Invest Ophthalmol Vis Sci 2003; 44: 3899–3905.

    Article  PubMed  Google Scholar 

  31. Hamrah P, Liu Y, Zhang Q, Dana MR . The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci 2003; 44: 581–589.

    Article  PubMed  Google Scholar 

  32. Zhu Z, Stevenson D, Ritter T, Schechter JE, Mircheff AK, Kaslow HR et al. Expression of IL-10 and TNF-inhibitor genes in lacrimal gland epithelial cells suppresses their ability to activate lymphocytes. Cornea 2002; 21: 210–214.

    Article  PubMed  Google Scholar 

  33. Kolls J, Peppel K, Silva M, Beutler B . Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc Natl Acad Sci USA 1994; 91: 215–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Katrin Vogt and Sabine Jyrch for technical assistance. In addition, the authors would like to thank Dr René de Waal Malefyt, DNAX, Palo Alto, CA, USA for providing the vIL-10 plasmid (pcDSRa-BCRF1). This work was supported in part by DFG (Pl 150/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, N., Pleyer, U., Volk, HD. et al. Effects of local and systemic viral interleukin-10 gene transfer on corneal allograft survival. Gene Ther 14, 484–490 (2007). https://doi.org/10.1038/sj.gt.3302884

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302884

Keywords

This article is cited by

Search

Quick links