Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rho-kinase as a novel gene therapeutic target in treatment of cold ischemia/reperfusion-induced acute lethal liver injury: effect on hepatocellular NADPH oxidase system

Abstract

In the transplant surgery, reactive oxygen species (ROS) from the reperfused tissue cause ischemia-reperfusion injury, resulting in the primary graft failure. We have recently reported that Rho-kinase, an effecter of the small GTPase Rho, plays an important role in the ROS production in the hyperacute phase of reperfusion; however, the sources and mechanisms of the ROS production remain to be elucidated. The aim of this study was to investigate the source of ROS production with a special reference to Rho-kinase to develop a new strategy against ischemia-reperfusion injury. In an in vivo rat model of liver transplantation, Kupffer cells in the graft were depleted using liposome-encapsulated dichloromethylene diphosphonate to examine the source of ROS production. The effect of adenoviral-mediated overexpression of a dominant-negative Rho-kinase (AdDNRhoK) in hepatocytes in the graft was also examined. Kupffer cells were not involved in the ROS production, whereas the AdDNRhoK transfection to hepatocytes significantly suppressed the ROS production. Furthermore, the ROS production was dose-dependently inhibited by apocynin, an NADPH oxidase inhibitor. Expression of DNRhoK also suppressed the release of pro-inflammatory cytokines, and ameliorated the lethal liver injury with a significant prolongation of the survival. These results suggest that the Rho-kinase-mediated pathway plays a crucial role in the ROS production through NADPH oxidase in hepatocytes during the hyperacute phase of reperfusion in vivo. Thus, Rho-kinase in hepatocytes may be a new therapeutic target for the prevention of primary graft failure in liver transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

AP-1:

activator protein-1

AST:

aspartate aminotransferase

Cl2MDP:

dichloromethylene diphosphonate

COX:

cycloxygenase

IL-1β:

interleukin-1β

NF-κβ:

nuclear factor-κβ

ROS:

reactive oxygen species

TNF-α:

tumor necrosis factor-α

References

  1. Totsuka E, Fung U, Hakamada K, Tanaka M, Takahashi K, Nakai M et al. Analysis of clinical variables of donors and recipients with respect to short-term graft outcome in human liver transplantation. Transplant Proc 2004; 36: 2215–2218.

    Article  CAS  PubMed  Google Scholar 

  2. Strassberg SM, Howard TK, Molmenti EP, Hertl M . Selecting the donor liver: risk factors for poor function after orthotopic liver transplantation. Hepatology 1994; 20: 829–838.

    Article  Google Scholar 

  3. Kiuchi T, Schlitt HJ, Oldhafer KJ, Nashan B, Ringe B, Kitai T et al. Backgrounds of early intragraft immune activation and rejection in liver transplant recipients. Impact of graft reperfusion quality. Transplantation 1995; 60: 49–55.

    Article  CAS  PubMed  Google Scholar 

  4. Granger DN, Rutili G, McCord JM . Superoxide radicals in feline intestinal ischemia. Gastroenterology 1981; 81: 22–29.

    CAS  PubMed  Google Scholar 

  5. McCord JM . Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159–163.

    Article  CAS  PubMed  Google Scholar 

  6. Caldwell-Kenkel JC, Thurman RG, Lemasters JJ . Selective loss of nonparenchymal cell viability after cold ischemic strage of rat livers. Transplantation 1988; 45: 834–837.

    Article  CAS  PubMed  Google Scholar 

  7. Imamura H, Sutto F, Braut A, Huet PM . Role of Kupffer cells in cold ischemia/reperfusion injury of rat liver. Gastroenterology 1995; 109: 189–197.

    Article  CAS  PubMed  Google Scholar 

  8. Jaeschke H, Farhood A . Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol 1991; 260: G355–G362.

    Article  CAS  PubMed  Google Scholar 

  9. Caldwell-Kenkel JC, Currin RT, Coote A, Thurman RG, Lemasters JJ . Reperfusion injury to endothelial cells after cold storage of rat livers: protection by mildly acidic pH and lack pf protection by antioxidants. Transpl Int 1995; 8: 77–85.

    Article  CAS  PubMed  Google Scholar 

  10. Shibuya H, Ohkohchi N, Seya K, Satomi S . Kupffer cells generate superoxide anions and modulate reperfusion injury in rat livers after cold preservation. Hepatology 1997; 25: 356–360.

    Article  CAS  PubMed  Google Scholar 

  11. Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC et al. Inhibition of Rac1 GTP ase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J 2000; 14: 418–429.

    Article  CAS  PubMed  Google Scholar 

  12. Kumamoto Y, Suematsu M, Shimazu M, Kato Y, Sano T, Makino N et al. Kupffer cell-independent acute hepatocellular oxidative stress and decreased bile formation in post-cold-ischemic rat liver. Hepatology 1999; 30: 1454–1463.

    Article  CAS  PubMed  Google Scholar 

  13. Zwacka RM, Zhou W, Zhang Y . Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-kappaB activation. Nat Med 1998; 4: 698–704.

    Article  CAS  PubMed  Google Scholar 

  14. Granger DN . Role of xanthin oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 1988; 255: H1269–H1275.

    CAS  PubMed  Google Scholar 

  15. De Groot H, Brecht M . Reoxygenation injury in rat hepatocytes: mediation by O2/H2O2 liberated by sources other than xanthine oxidase. Biol Chem 1991; 372: 35–41.

    CAS  Google Scholar 

  16. Curtin JF, Donovan M, Cotter TG . Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 2002; 265: 49–72.

    Article  CAS  PubMed  Google Scholar 

  17. Shimokawa H . Rho-kinase as a novel therapeutic in treatment of cardiovascular diseases. J Cardiovasc Pharmacol 2002; 39: 319–327.

    Article  CAS  PubMed  Google Scholar 

  18. Shimokawa H, Morishige K, Miyata K, Kandabashi T, Eto Y, Ikegaki I et al. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc Res 2001; 51: 169–177.

    Article  CAS  PubMed  Google Scholar 

  19. Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swaine model of coronary artery spasm. Cardiovasc Res 1999; 43: 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  20. Morishige K, Shimokawa H, Eto Y, Kandabashi T, Miyata K, Matsumoto Y et al. Adenovirus-mediated transfer of dominant-negative Rho-kinase induces a regression of coronary arteriosis in pigs in vivo. Arterioscler Thromb Vasc Biol 2001; 21: 548–554.

    Article  CAS  PubMed  Google Scholar 

  21. Mukai Y, Shimokawa H, Higashi M, Morikawa K, Matoba T, Hiroki J et al. Inhibition of renin-angiotensin system ameliorates endothelial dysfunction associated with aging in rats. Arterioscler Thromb Vasc Biol 2002; 22: 1445–1450.

    Article  CAS  PubMed  Google Scholar 

  22. Arai M, Sasaki T, Nozawa R . Inhibition by the protein kinase inhibitor HA1077 (fasudil) of the activation of NADPH oxidase in human neutrophils. Biochem Pharmacol 1993; 46: 1487–1490.

    Article  CAS  PubMed  Google Scholar 

  23. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced Cardiovascular Hypertrophy in rats in vivo. Circ Res 2003; 93: 767–775.

    Article  CAS  PubMed  Google Scholar 

  24. Shiotani S, Shimada M, Suehiro T, Soejima Y, Yoshizumi T, Shimokawa H et al. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats. Transplantation 2004; 78: 375–382.

    Article  CAS  PubMed  Google Scholar 

  25. Segain JP, Blétière DR, Sauzeau V, Bourreille A, Hilaret G, Chrystelle CT et al. Rho kinase blockade prevents inflammation via nuclear factor κB inhibition: evidence in Crohn's disease and experimental colitis. Gastroenterology 2003; 124: 1180–1187.

    Article  CAS  PubMed  Google Scholar 

  26. Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol 2004; 37: 537–546.

    Article  CAS  PubMed  Google Scholar 

  27. Brass CA, Robert TG . Hepatic free radical production after cold strage: Kupffer cell-dependent and -independent mechanisms in rats. Gastroenterology 1995; 108: 1167–1175.

    Article  CAS  PubMed  Google Scholar 

  28. Sun JZ, Tang XL, Park SW, Qiu Y, turrens JF, Bolli R . Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 1996; 97: 562–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeGroot H, Buittasuer A . Reoxygenation injury in isolated hepatocytes: cell death proceeded conversion of xanthine dehydrogenase to xanthine oxidase. Biochem Biophys Res Commun 1988; 155: 278–282.

    Article  CAS  Google Scholar 

  30. Ohkohchi N, Sakurada M, Endoh T, Koyamada M, Katoh H, Koizumi M et al. Role of free radicals and energy synthesis on primary graft nonfunction in liver transplantation. Transplant Proc 1991; 23: 2416–2419.

    CAS  PubMed  Google Scholar 

  31. Zhang Z, Blake DR, stevens CR, Kanczler JM, Winyard PG, Symons MC et al. A reappraisal of xanthine dehydrogenase and oxidase on hypoxic reperfusion injury: the role of NADPH as an electron donor. Free Radic Res 1998; 28: 151–164.

    Article  CAS  PubMed  Google Scholar 

  32. Suh YA, Arnold RS, Lassegue B . Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401: 79–82.

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh S, May MJ, Kopp EB . NF-κB and Rel proteins: evolutionary conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–260.

    Article  CAS  PubMed  Google Scholar 

  34. Yoshidome H, Kato A, Edwards MJ, Lentsch AB . Interleukin-10 suppresses hepatic/ischemia reperfusion injury in mice: implications of a central role for nuclear factor κB. Hepatology 1999; 30: 203–208.

    Article  CAS  PubMed  Google Scholar 

  35. Rockey D . The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology 1997; 25: 2–5.

    Article  CAS  PubMed  Google Scholar 

  36. Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Kaibuchi K et al. Long-term treatment with a specific Rho-kinase inhibitor suppresses cardiac allograft vasculopathy in mice. Circ Res 2004; 94: 46–52.

    Article  CAS  PubMed  Google Scholar 

  37. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S . An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med 1999; 5: 221–225.

    Article  CAS  PubMed  Google Scholar 

  38. Hashimoto K, Nishizaki T, Yoshizumi T, Uchiyama H, Okano S, Ikegami T et al. Beneficial effect of FR167653 on cold ischemia/reperfusion injury in rat liver transplantation. Transplantation 2000; 70: 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  39. Kamada N, Calne RY . A surgical experience with five hundred thirty liver transplants in the rat. Surgery 1983; 93: 64.

    CAS  PubMed  Google Scholar 

  40. Van Rooijen N, Kors N, Van de Ende M, Dijkstra CD . Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 1990; 260: 215–222.

    Article  CAS  PubMed  Google Scholar 

  41. Rajagolan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  Google Scholar 

  42. Gyllenhammar H . Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J Immunol Methods 1987; 97: 209–213.

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA . Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 1998; 273: 2015–2023.

    Article  CAS  PubMed  Google Scholar 

  44. Herrera B, Murillo MM, Alvarez-Barrientos A, Beltran J, Fernandez M, Fabregat I . Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic Biol Med 2004; 36: 16–26.

    Article  CAS  PubMed  Google Scholar 

  45. Shannon M, Bailey E, Christine P, Cunningham CC . Ethanol stimulates the production of reactive oxygen species at mitochondrial complex I and III. Free Radic Biol Med 1999; 27: 891–900.

    Article  Google Scholar 

  46. Kim JA, Lee YS . Role of reactive oxygen species generated by NADPH oxidase in the mechanism of activation of K(+)-Cl(−)-cotransport by N-ethylmaleimide in HepG2 human hepatoma cells. Free Radic Res 2001; 35: 43–53.

    Article  CAS  PubMed  Google Scholar 

  47. Shaked A, Csete ME, Drazan KE, Bullington D, Wu E, Busuttil RW et al. Adenovirus-mediated gene transfer in the transplant setting. Transplantation 1994; 57: 1508–1511.

    Article  CAS  PubMed  Google Scholar 

  48. Fukata Y, Kimura K, Oshiro N, Saya H, Matsuura Y, Kaibuchi K . Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase (Rho kinase) and myosin phosphatase. J Cell Biol 1998; 141: 409–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998; 101: 2567–2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tawadrous MN, Zhang XY, Wheatley AM . Microvascular origin of Laser-Doppler flux signal from the surface of normal and injured liver of the rat. Microvasc Res 2001; 62: 355–365.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T Hattori, M Higashi, S Masuda and Y Kubota, Kyushu University Graduate School of Medical Sciences, for excellent technical assistance. This study was supported in part by the grant-in-aid (no. 13357011) and the grant for the 21st Century COE Program from the Japanese Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan, and the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Pharmaceutical Safety and Research of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Shiotani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiotani, S., Shimada, M., Taketomi, A. et al. Rho-kinase as a novel gene therapeutic target in treatment of cold ischemia/reperfusion-induced acute lethal liver injury: effect on hepatocellular NADPH oxidase system. Gene Ther 14, 1425–1433 (2007). https://doi.org/10.1038/sj.gt.3303000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303000

Keywords

This article is cited by

Search

Quick links