Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of antigen-specific CD8+ cytotoxic T cells by dendritic cells co-electroporated with a dsRNA analogue and tumor antigen mRNA

Abstract

The maturation state of dendritic cells (DCs) is an important determinant for the initiation and regulation of adaptive immune responses. In this study, we wanted to assess whether functional activation of human monocyte-derived DCs can be achieved by electroporation of an activation signal in the form of double-stranded (ds) RNA and whether simultaneous electroporation of the dsRNA with tumor antigen encoding mRNA can lead to the induction of a cytotoxic T-lymphocyte (CTL) response. Electroporation of immature DCs with poly(I:C12U), a dsRNA analogue, resulted in phenotypic as well as functional changes, indicative of DC maturation. Co-electroporation of DCs with both poly(I:C12U) and Melan-A/MART-1 encoding mRNA induced strong anti-Melan-A/MART-1 CD8+ T-cell responses in vitro. Higher numbers of Melan-A/MART-1-specific CTLs were consistently obtained with poly(I:C12U)-activated DCs compared to DCs matured in the presence of an inflammatory cytokine cocktail. These results indicate that DC co-electroporation with both dsRNA and tumor antigen encoding mRNA induces fully activated and antigen-loaded DCs that promote antigen-specific CTL responses and may provide the basis for future immunotherapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Janeway Jr CA . Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54 (Part 1): 1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 2003; 171: 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  4. Williams BR . Signal integration via PKR. Sci STKE 2001; 89: RE2.

    Google Scholar 

  5. Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 2003; 424: 324–328.

    Article  CAS  PubMed  Google Scholar 

  6. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD . How cells respond to interferons. Annu Rev Biochem 1998; 67: 227–264.

    Article  CAS  PubMed  Google Scholar 

  7. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  8. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  9. Gallucci S, Lolkema M, Matzinger P . Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5: 1249–1255.

    Article  CAS  PubMed  Google Scholar 

  10. Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 1998; 161: 1947–1953.

    CAS  PubMed  Google Scholar 

  11. Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF . Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 2001; 14: 461–470.

    Article  CAS  PubMed  Google Scholar 

  12. Lebre MC, Antons JC, Kalinski P, Schuitemaker JH, van Capel TM, Kapsenberg ML et al. Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor alpha, type I interferons, and interleukin-18. J Invest Dermatol 2003; 120: 990–997.

    Article  CAS  PubMed  Google Scholar 

  13. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996; 196: 137–151.

    Article  CAS  PubMed  Google Scholar 

  14. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27: 3135–3142.

    Article  CAS  PubMed  Google Scholar 

  15. Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 1999; 163: 57–61.

    CAS  PubMed  Google Scholar 

  16. Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A . Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 1999; 189: 821–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Jong EC, Vieira PL, Kalinski P, Schuitemaker JH, Tanaka Y, Wierenga E et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals. J Immunol 2002; 168: 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  18. Kapsenberg ML . Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003; 3: 984–993.

    Article  CAS  PubMed  Google Scholar 

  19. Reis e Sousa C . Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 2004; 16: 21–25.

    Article  CAS  PubMed  Google Scholar 

  20. Adams M, Navabi H, Jasani B, Man S, Fiander A, Evans AS et al. Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R). Vaccine 2003; 21: 787–790.

    Article  CAS  PubMed  Google Scholar 

  21. Ponsaerts P, Van den Bosch G, Cools N, Van Driessche A, Nijs G, Lenjou M et al. Messenger RNA electroporation of human monocytes, followed by rapid in vitro differentiation, leads to highly stimulatory antigen-loaded mature dendritic cells. J Immunol 2002; 169: 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  22. Scandella E, Men Y, Gillessen S, Forster R, Groettrup M . Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 2002; 100: 1354–1361.

    Article  CAS  PubMed  Google Scholar 

  23. Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA et al. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 2002; 100: 1362–1372.

    Article  CAS  PubMed  Google Scholar 

  24. Jacobs BL, Langland JO . When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 1996; 219: 339–349.

    Article  CAS  PubMed  Google Scholar 

  25. Horng T, Barton GM, Medzhitov R . TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2001; 2: 835–841.

    Article  CAS  PubMed  Google Scholar 

  26. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23: 19–28.

    Article  CAS  PubMed  Google Scholar 

  27. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al. The nature of the principal type I interferon-producing cells in human blood. Science 1999; 284: 1835–1837.

    Article  CAS  PubMed  Google Scholar 

  28. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  PubMed  Google Scholar 

  29. Kalinski P, Vieira PL, Schuitemaker JH, de Jong EC, Kapsenberg ML . Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 2001; 97: 3466–3469.

    Article  CAS  PubMed  Google Scholar 

  30. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001; 98: 49–56.

    Article  CAS  PubMed  Google Scholar 

  31. Tuyaerts S, Michiels A, Corthals J, Bonehill A, Heirman C, de Greef C et al. Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Ther 2003; 10: 696–706.

    Article  CAS  PubMed  Google Scholar 

  32. Bonehill A, Heirman C, Tuyaerts S, Michiels A, Zhang Y, van der Bruggen P et al. Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res 2003; 63: 5587–5594.

    CAS  PubMed  Google Scholar 

  33. Michiels A, Tuyaerts S, Bonehill A, Corthals J, Breckpot K, Heirman C et al. Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Therapy 2005; 12: 772–782.

    Article  CAS  PubMed  Google Scholar 

  34. Grunebach F, Kayser K, Weck MM, Muller M, Appel S, Brossart P . Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 2005; 12: 749–756.

    Article  PubMed  Google Scholar 

  35. Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B et al. Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 2005; 105: 3206–3213.

    Article  CAS  PubMed  Google Scholar 

  36. Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML et al. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004; 64: 5934–5937.

    Article  CAS  PubMed  Google Scholar 

  37. Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 2005; 201: 1435–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A . Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6: 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valmori D, Fonteneau JF, Lizana CM, Gervois N, Lienard D, Rimoldi D et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 1998; 160: 1750–1758.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Erna Borms, Christine Huysmans and Jan Volkaert for help with DC cultures, Elsy Vaeremans and Peggy Verbuyst for mRNA preparations, Roger Andries and Jos Theunissen for their helpful technical suggestions and Daniel Powell and Gregory Lizée for critical reading of the manuscript. This work was supported by grants to Kris Thielemans from the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Ministry of Science (IUAP/PAI IV), the Fortis Bank, the Belgische Federatie voor Kankerbestrijding and BruCells. JL Aerts was supported by a return grant from the Belgian Science Policy (BELSPO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Aerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michiels, A., Breckpot, K., Corthals, J. et al. Induction of antigen-specific CD8+ cytotoxic T cells by dendritic cells co-electroporated with a dsRNA analogue and tumor antigen mRNA. Gene Ther 13, 1027–1036 (2006). https://doi.org/10.1038/sj.gt.3302750

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302750

Keywords

This article is cited by

Search

Quick links