Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene

Abstract

We have recently shown that the NS3-based genetic immunogens should contain also hepatitis C virus (HCV) nonstructural (NS) 4A to utilize fully the immunogenicity of NS3. The next step was to try to enhance immunogenicity by modifying translation or mRNA synthesis. To enhance translation efficiency, a synthetic NS3/4A-based DNA (coNS3/4A-DNA) vaccine was generated in which the codon usage was optimized (co) for human cells. In a second approach, expression of the wild-type (wt) NS3/4A gene was enhanced by mRNA amplification using the Semliki forest virus (SFV) replicon (wtNS3/4A-SFV). Transient tranfections of human HepG2 cells showed that the coNS3/4A gene gave 11-fold higher levels of NS3 as compared to the wtNS3/4A gene when using the CMV promoter. We have previously shown that the presence of NS4A enhances the expression by SFV. Both codon optimization and mRNA amplification resulted in an improved immunogenicity as evidenced by higher levels of NS3-specific antibodies. This improved immunogenicity also resulted in a more rapid priming of cytotoxic T lymphocytes (CTLs). Since HCV is a noncytolytic virus, the functionality of the primed CTL responses was evaluated by an in vivo challenge with NS3/4A-expressing syngeneic tumor cells. The priming of a tumor protective immunity required an endogenous production of the immunogen and CD8+ CTLs, but was independent of B and CD4+ T cells. This model confirmed the more rapid in vivo activation of an NS3/4A-specific tumor-inhibiting immunity by codon optimization and mRNA amplification. Finally, therapeutic vaccination with the coNS3/4A gene using gene gun 6–12 days after injection of tumors significantly reduced the tumor growth in vivo. Codon optimization and mRNA amplification effectively enhances the overall immunogenicity of NS3/4A. Thus, either, or both, of these approaches should be utilized in an NS3/4A-based HCV genetic vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Di Bisceglie AM, Hoofnagle JH . Optimal therapy of hepatitis C. Hepatology 2002; 36: S121–S127.

    PubMed  Google Scholar 

  2. Weiner AJ et al. Evidence for immune selection of Hepatitis-C Virus (HCV) putative envelope glycoprotein variants – potential role in chronic HCV infections. Proc Natl Acad Sci USA 1992; 89: 3468–3472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramratnam B et al. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 1999; 354: 1782–1785.

    Article  CAS  PubMed  Google Scholar 

  4. Ogata N, Alter HJ, Miller RH, Purcell RH . Nucleotide sequence and mutation rate of the H strain of hepatitis C virus. Proc Natl Acad Sci USA 1991; 88: 3392–3396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu L et al. Evaluation of accumulation of hepatitis C virus mutations in a chronically infected chimpanzee: comparison of the core, E1, HVR1, and NS5b regions. J Virol 2001; 75: 3004–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bocher WO et al. Induction of strong hepatitis B virus (HBV) specific T helper cell and cytotoxic T lymphocyte responses by therapeutic vaccination in the trimera mouse model of chronic HBV infection. Eur J Immunol 2001; 31: 2071–2079.

    Article  CAS  PubMed  Google Scholar 

  7. Brinster C et al. Different hepatitis C virus nonstructural protein 3 (Ns3)-DNA- expressing vaccines induce in HLA-A2.1 transgenic mice stable cytotoxic T lymphocytes that target one major epitope. Hepatology 2001; 34: 1206–1217.

    Article  CAS  PubMed  Google Scholar 

  8. Encke J, zu Putlitz J, Geissler M, Wands JR . Genetic immunization generates cellular and humoral immune responses against the nonstructural proteins of the hepatitis C virus in a murine model. J Immunol 1998; 161: 4917–4923.

    CAS  PubMed  Google Scholar 

  9. Forns X et al. DNA immunization of mice and macaques with plasmids encoding hepatitis C virus envelope E2 protein expressed intracellularly and on the cell surface. Vaccine 1999; 17: 1992–2002.

    Article  CAS  PubMed  Google Scholar 

  10. Geissler M et al. Differential cellular and humoral immune responses to HCV core and HBV envelope proteins after genetic immunizations using chimeric constructs. Vaccine 1998; 16: 857–867.

    Article  CAS  PubMed  Google Scholar 

  11. Gordon EJ et al. Immune responses to hepatitis C virus structural and nonstructural proteins induced by plasmid DNA immunizations. J Infect Dis 2000; 181: 42–50.

    Article  CAS  PubMed  Google Scholar 

  12. Inchauspe G et al. Plasmid DNA expressing a secreted or a nonsecreted form of hepatitis C virus nucleocapsid: comparative studies of antibody and T-helper responses following genetic immunization. DNA Cell Biol 1997; 16: 185–195.

    Article  CAS  PubMed  Google Scholar 

  13. Lazdina U et al. Humoral and CD4(+) T helper (Th) cell responses to the hepatitis C virus non-structural 3 (NS3) protein: NS3 primes Th1-like responses more effectively as a DNA-based immunogen than as a recombinant protein. J Gen Virol 2001; 82: 1299–1308.

    Article  CAS  PubMed  Google Scholar 

  14. Major ME et al. DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J Virol 1995; 69: 5798–5805.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Satoi J et al. Genetic immunization of wild-type and hepatitis C virus transgenic mice reveals a hierarchy of cellular immune response and tolerance induction against hepatitis C virus structural proteins. J Virol 2001; 75: 12121–12127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tokushige K et al. Expression and immune response to hepatitis C virus core DNA-based vaccine constructs. Hepatology 1996; 24: 14–20.

    Article  CAS  PubMed  Google Scholar 

  17. Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H . Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol 1993; 67: 3835–3844.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartenschlager R, Lohmann V, Wilkinson T, Koch JO . Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. J Virol 1995; 69: 7519–7528.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Failla C, Tomei L, De Francesco R . Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol 1994; 68: 3753–3760.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pang PS, Jankowsky E, Planet PJ, Pyle AM . The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 2002; 21: 1168–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolk B et al. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3–NS4A complex expressed in tetracycline- regulated cell lines [In Process Citation]. J Virol 2000; 74: 2293–2304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanji Y et al. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J Virol 1995; 69: 1575–1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Frelin L et al. Low dose and gene gun immunization with a hepatitis C virus nonstructural (NS) 3 DNA-based vaccine containing NS4A inhibit NS3/4A-expressing tumors in vivo. Gene Therapy 2003; 10: 686–699.

    Article  CAS  PubMed  Google Scholar 

  24. Foy E et al. Regulation of interferon regulatory factor-3 by the Hepatitis C virus serine protease. Science 2003; 300: 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  25. Deml L et al. Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein. J Virol 2001; 75: 10991–11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cid-Arregui A, Juarez V, zur Hausen H . A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J Virol 2003; 77: 4928–4937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sallberg M et al. Immunogenicity and antigenicity of the ATPase/helicase domain of the hepatitis C virus non-structural 3 protein. J Gen Virol 1996; 77: 2721–2728.

    Article  PubMed  Google Scholar 

  28. Schirmbeck R, Reimann J . Modulation of gene-gun-mediated Th2 immunity to hepatitis B surface antigen by bacterial CpG motifs or IL-12. Intervirology 2001; 44: 115–123.

    Article  CAS  PubMed  Google Scholar 

  29. Chen M et al. Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol 2002; 169: 3208–3216.

    Article  CAS  PubMed  Google Scholar 

  30. Kitamura D, Roes J, Kuhn R, Rajewsky K . A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991; 350: 423–426.

    Article  CAS  PubMed  Google Scholar 

  31. Rahemtulla A et al. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 1991; 353: 180–184.

    Article  CAS  PubMed  Google Scholar 

  32. Sadick MD et al. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med 1990; 171: 115–127.

    Article  CAS  PubMed  Google Scholar 

  33. Savelkoul HF, Termeulen J, Coffman RL, Van der Linde-Preesman RA . Frequency analysis of functional Ig C epsilon gene expression in the presence and absence of interleukin 4 in lipopolysaccharide-reactive murine B cells from high and low IgE responder strains. Eur J Immunol 1988; 18: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  34. Jiao X et al. Modulation of cellular immune response against hepatitis C virus nonstructural protein 3 by cationic liposome encapsulated DNA immunization. Hepatology 2003; 37: 452–460.

    Article  CAS  PubMed  Google Scholar 

  35. Brinster C et al. Hepatitis C virus non-structural protein 3-specific cellular immune responses following single or combined immunization with DNA or recombinant Semliki Forest virus particles. J Gen Virol 2002; 83: 369–381.

    Article  CAS  PubMed  Google Scholar 

  36. Cho HJ et al. IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J Immunol 2002; 168: 4907–4913.

    Article  CAS  PubMed  Google Scholar 

  37. Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709–760.

    Article  CAS  PubMed  Google Scholar 

  38. Krug A et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 2001; 31: 2154–2163.

    Article  CAS  PubMed  Google Scholar 

  39. Atkins GJ, Sheahan BJ, Liljestrom P . The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J Gen Virol 1999; 80 (Part 9): 2287–2297.

    Article  CAS  PubMed  Google Scholar 

  40. Matzinger P . The danger model: a renewed sense of self. Science 2002; 296: 301–305.

    Article  CAS  PubMed  Google Scholar 

  41. Baigent SJ et al. Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechanism. J Virol 2002; 76: 8979–8988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho JH, Youn JW, Sung YC . Cross-priming as a predominant mechanism for inducing CD8(+) T cell responses in gene gun DNA immunization. J Immunol 2001; 167: 5549–5557.

    Article  CAS  PubMed  Google Scholar 

  43. Janssen EM et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    Article  CAS  PubMed  Google Scholar 

  44. Blindenbacher A et al. Expression of hepatitis c virus proteins inhibits interferon alpha signaling in the liver of transgenic mice. Gastroenterology 2003; 124: 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  45. Jin L, Peterson DL . Expression, isolation, and characterization of the hepatitis C virus ATPase/RNA helicase. Arch Biochem Biophys 1995; 323: 47–53.

    Article  CAS  PubMed  Google Scholar 

  46. Choo QL et al. Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci USA 1991; 88: 2451–2455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smerdou C, Liljestrom P . Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 1999; 73: 1092–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Smerdou C, Liljestrom P . Non-viral amplification systems for gene transfer: vectors based on alphaviruses. Curr Opin Mol Ther 1999; 1: 244–251.

    CAS  PubMed  Google Scholar 

  49. Liljeström P, Garoff H . Expression of Proteins Using SemlikiForest Virus Vectors. In current Protocols in Molecular Biology. Greene Publishing Associates and Wiley Interscience, 1994, pp 1092–1098.

    Google Scholar 

  50. Davis HL et al. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum Gene Ther 1993; 4: 733–740.

    Article  CAS  PubMed  Google Scholar 

  51. Dal Porto J et al. A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations. Proc Natl Acad Sci USA 1993; 90: 6671–6675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lazdina U et al. Molecular basis for the interaction of the hepatitis B virus core antigen with the surface immunoglobulin receptor on naive B cells. J Virol 2001; 75: 6367–6374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by Grant no. K2000-06X-12617-03A and K2002-16X-09494-12B from the Swedish Research Council, and by Grant no. QLK2-1999-00588 from the European Community.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frelin, L., Ahlén, G., Alheim, M. et al. Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. Gene Ther 11, 522–533 (2004). https://doi.org/10.1038/sj.gt.3302184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302184

Keywords

This article is cited by

Search

Quick links