Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy approaches for osteogenesis imperfecta

Abstract

Osteogenesis imperfecta (OI) is a heterogeneous group of genetic disorders that affect connective tissue integrity. The hallmark of OI is bone fragility, although other manifestations, which include osteoporosis, dentigenesis imperfecta, blue sclera, easy bruising, joint laxity and scoliosis, are also common among OI patients. The severity of OI ranges from prenatal death to mild osteopenia without limb deformity. Most forms of OI result from mutations in the genes that encode either the proα1or proα2 polypeptide chains that comprise type I collagen molecules, the major structural protein of bone. Treatment depends mainly on the severity of the disease with the primary goal to minimize fractures and maximize function. Current treatments include surgical intervention with intramedullarly stabilization and the use of prostheses. Pharmacological agents have also been attempted with limited success with the exception of recent use of bisphosphonates, which have been to shown to have some effect. Since OI is a genetic disease, these agents are not expected to alter the course of the collagen mutations. Cell and gene therapies as potential treatments for OI are therefore currently being actively investigated. The design of gene therapies for OI is however complicated by the genetic heterogeneity of the disease and by the factor that most of the OI mutations are dominant negative where the mutant allele product interferes with the function of the normal allele. The present review will discuss the molecular changes seen in OI, the current treatment options and the gene therapy approaches being investigated as potential future treatments for OI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen Y . Orthopaedic applications of gene therapy. J Orth Sci 2001; 6: 199–207.

    Article  CAS  Google Scholar 

  2. Evans CH, Robbins PD . Possible orthopaedic application of gene therapy. J Bone Joint Surg Am 1995; 77: 1103–1114.

    Article  CAS  Google Scholar 

  3. Byres PH . Disorders of collagen biosynthesis and structure. In: Scriver CR, Beaudet A, Sly WS, Valle D (eds). Metabolic and Molecular Basis of Inherited Diseases. McGraw Hill: New York, Vol. IV, 8th edn. 2001, pp 5241–5285.

    Google Scholar 

  4. Kuivanieni H, Tromp G, Prockop DJ . Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J 1991; 5: 2052–2060.

    Article  Google Scholar 

  5. Byres PH, Pyritz RE, Uitto J . Research perspectives of inheritable disorders of connective tissues. Matrix 1992; 12: 333–342.

    Article  Google Scholar 

  6. Shapiro JR, Chipman SD . Osteogenesis imperfecta. In: Kang A, Nimni ME (eds). Collagen. Vol. 5. Pathobiochemistry. CRC Press: Boca Raton, FL, 1992, pp 49–85.

    Google Scholar 

  7. Seedorf KS . Osteogenesis imperfecta: a clinical study of clinical features heredity based on 55 Danish families, Universitetsforlaget I, Aarthus, 1949.

  8. Sillence DO, Senn A, Danks DM . Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979; 16: 101–106.

    Article  CAS  Google Scholar 

  9. Glorieux FH et al. Type V osteogenesis imperfecta; a new form of brittle bone disease. J Bone Miner Res 200; 15: 1650–1658.

    Article  Google Scholar 

  10. Glorieux FH et al. Type VI osteogenesis imperfecta: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 2002; 17: 30–38.

    Article  Google Scholar 

  11. Ward LM et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 2002; 31: 12–18.

    Article  CAS  Google Scholar 

  12. Rowe DW et al. Diminished type I collagen synthesis and reduced α(I) collagen mRNA in cultured fibroblasts from patients with dominantly inherited osteogenesis imperfecta. J Clin Invest 1985; 76: 604.

    Article  CAS  Google Scholar 

  13. Barsh GS, Byers PH . Reduced secretion of structurally abnormal type I procollagen in a form of osteogenesis imperfecta. Proc Natl Acad Sci USA 1981; 78: 5142–5146.

    Article  CAS  Google Scholar 

  14. Prockop DJ . Mutations in collagen genes as a cause of connective tissue diseases. New Engl J Med 1992; 326: 540–546.

    Article  CAS  Google Scholar 

  15. Niyibizi C et al. Incorporation level of a mutant collagen α2(I) chain (Gly580-ASP) into bone matrix in a lethal case of osteogenesis imperfecta. J Biol Chem 1992; 25: 23108–23112.

    Google Scholar 

  16. Prockop DJ et al. Mutations in type 1 procollagen that cause osteogenesis imperfecta: effects of the mutations on the assembly of collagen into fibrils, the basis of phenotypic variations, and potential antisense therapies. J Bone Miner Res suppl 2; 1993: S489–S492.

    Google Scholar 

  17. van der Rest M, Garrone R . Collagen family of proteins. FASEB J 1991; 5: 2814–2823.

    Article  CAS  Google Scholar 

  18. Niyibizi C, Eyre D . Structural characteristics of cross-linking sites in type V collagen of bone chain specificities and heterotypic links to type I collagen. Eur J Biochem 1994; 224: 943–950.

    Article  CAS  Google Scholar 

  19. Culbert AA, Kadler KE . Tracing the pathway between mutation and phenotype in OI; isolation of mineralization of specific genes. Am J Med Genet 1996; 63: 167–174.

    Article  CAS  Google Scholar 

  20. Sillence DO . Osteogenesis imperfecta: an expanding panorama of variants. Clin Orthop Rel Res 1989; 159: 11–25.

    Google Scholar 

  21. Porat S, Heller E, Seidamamn DS . Functional results of operations in OI: elongating and nonelongating rods with pediatric orthopaedics. J Pediatr Orthop 1991; 11: 200–203.

    Article  CAS  Google Scholar 

  22. Antoniazzi F et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr 1996; 129: 432–439.

    Article  CAS  Google Scholar 

  23. Marini JC et al. The growth hormone and somatomedin axis in short children with osteogenesis imperfecta. J Clin Endocrinol Metab 1993; 76: 251–256.

    CAS  PubMed  Google Scholar 

  24. Glorieux FH et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998; 339: 947–952.

    Article  CAS  Google Scholar 

  25. Plotkin H et al. Pamidronate treatment of severe osteogenesis imperfecta in children under 3 years of age. J Clin Endocrinol Metab 2000; 85: 1846–1850.

    CAS  PubMed  Google Scholar 

  26. Rauch F et al. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest 2002; 110: 1293–1299.

    Article  CAS  Google Scholar 

  27. Rodan GA, Martin TJ . Therapeutic approaches to bone diseases. Science 2000; 289: 1508–1514.

    Article  CAS  Google Scholar 

  28. Cepollaro C et al. Osteogenesis imperfecta: bone turnover, bone density, and ultrasound parameters. Calcif Tissue Int 1999; 65: 129–132.

    Article  CAS  Google Scholar 

  29. Baron R et al. Increased bone turnover with decreased bone formation by osteoblasts in children with osteogenesis imperfecta tarda. Pediatr Res 1983; 17: 204–207.

    Article  CAS  Google Scholar 

  30. Camacho NP et al. A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif Tissue Int 2001; 69: 94–101.

    Article  CAS  Google Scholar 

  31. Gothin G, Ericsson JLM . The osteoclast: review of ultrastructure, origin and structure–function relationship. Clin Orthop 1996; 120: 201–231.

    Google Scholar 

  32. Aubin J, Fina L . The osteoblast lineage. In: Bilezekian J, Raisiz L, Rodan GA (eds). Principals of Bone Biology. Academic Press: San Diego, 1996, pp 51–68.

    Google Scholar 

  33. Prockop DJ . Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  Google Scholar 

  34. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  Google Scholar 

  35. Caplan AI . Mesenchymal stem cells. J Orthop Res 1991; 9: 641–650.

    Article  CAS  Google Scholar 

  36. Friedenstein AJ . Precursor cells of mechanocytes. Int Rev Cytol 1976; 47: 327–359.

    Article  CAS  Google Scholar 

  37. Pereira RF et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irradiated mice. Proc Natl Acad Sci USA 1995; 92: 4857–4861.

    Article  CAS  Google Scholar 

  38. Pereira RF et al. Marrow stromal cells as a source of progenitor cells for non hematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 1988; 95: 1142–1147.

    Article  Google Scholar 

  39. Oyama M et al. Retrovirally transduced bone marrow stromal cells isolated from a mouse model of human osteogenesis imperfecta (oim) persist in bone and retain the ability to form cartilage and bone after extended passaging. Gene Therapy 1999; 6: 321–329.

    Article  CAS  Google Scholar 

  40. Nilsson SK et al. Cells capable of bone production engraft from whole bone marrow transplants in non-ablated mice. J Exp Med 1999; 189: 729–734.

    Article  CAS  Google Scholar 

  41. Devinem S et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001; 29: 244–255.

    Article  Google Scholar 

  42. Liechty KW et al. Human mesenchymal stem cells engraft and demonstrate site specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.

    Article  CAS  Google Scholar 

  43. Niyibzi C et al. Potential of gene therapy for treating osteogenesis imperfecta. Clin Orthop Rel Res 2000; 379S: 126–133.

    Article  Google Scholar 

  44. Horwitz EM et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal stem cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.

    Article  CAS  Google Scholar 

  45. Horwitz EM et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001; 97: 1227–1231.

    Article  CAS  Google Scholar 

  46. Horwitz EM et al. Isolated allogeneic bone marrow-derived mesenchymal stem cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 25: 8932–8937.

    Article  Google Scholar 

  47. Forlino A, Marini JC . Osteogenesis imperfecta: prospects for molecular therapeutics. Mol Genet Metab 2000; 71: 225–232.

    Article  CAS  Google Scholar 

  48. Millington-Ward S et al. Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta. Hum Mol Genet 2002; 11: 2201–2206.

    Article  CAS  Google Scholar 

  49. Millington-Ward S et al. A mutation-independent therapeutic strategem for osteogenesis imperfecta. Antisense Nucleic Acid Drug Dev 1999; 9: 537–542.

    Article  CAS  Google Scholar 

  50. Millington-Ward S et al. Strategems in vitro for gene therapies directed to dominant mutations. Hum Mol Genet 1997; 6: 1415–1426.

    Article  CAS  Google Scholar 

  51. Marini JC, Gerber NL . Osteogenesis imperfecta rehabilitation and prospects for gene therapy. JAMA 1997; 277: 746–750.

    Article  CAS  Google Scholar 

  52. Jaspal S, Hillan SL, Prockop DJ . Partial rescue of a lethal phenotype of fragile bones in transgenic mice with a chimeric antisense gene directed against a mutated collagen gene. Proc Natl Acad Sci USA 1994; 91: 6298–6302.

    Article  Google Scholar 

  53. Wang Q, Marini JC . Antisense oligodeoxynucleotides selectively suppress expression of the mutant α1(I) collagen allele in Type IV osteogenesis imperfecta fibroblasts. A molecular approach to therapeutics of dominant negative disorders. J Clin Invest 1996; 97: 448–454.

    Article  CAS  Google Scholar 

  54. Grassi G, Marini JC . Ribozymes: structure, function, and potential therapy for dominant genetic disorders. Ann Med 1996; 28: 499–510.

    Article  CAS  Google Scholar 

  55. Dawson PA, Marini JC . Hammerhead ribozymes selectively suppress mutant type I collagen mRNA in osteogenesis imperfecta fibroblasts. Nucleic Acids Res 2000; 28: 4013–4020.

    Article  CAS  Google Scholar 

  56. Grassi G, Forlino A, Marini JC . Cleavage of collagen RNA transcripts by hammerhead ribozymes in vitro is mutation-specific and shows competitive binding effects. Nucleic Acids Res 1997; 25: 3451–3458.

    Article  CAS  Google Scholar 

  57. Caplen NJ et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001; 98: 9742–9747.

    Article  CAS  Google Scholar 

  58. Allen D et al. Development of RNAi as a mutation independent gene therapy for osteogenesis imperfecta. Abstract presented at the 8th International Conference of Osteogenesis Imperfecta, Annecy, France, 2002.

  59. Chipman SD et al. Defective proα2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc Natl Acad USA 1993; 90: 1701–1705.

    Article  CAS  Google Scholar 

  60. Suzuki K et al. In vivo expression of human growth hormone by genetically modified murine bone marrow stromal cells and its effect on the cells in vitro. Cell Transplant 2000; 9: 319–327.

    Article  CAS  Google Scholar 

  61. Sands MS, Baker JE . Percutaneous intravenous injection in neonatal mice. Lab Anim Sci 1999; 49: 328–330.

    CAS  Google Scholar 

  62. Niyibizi C et al. Transfer of proalpha2(I) cDNA into cells of a murine model of human osteogenesis imperfecta restores synthesis of type I collagen comprised of alpha1(I) and alpha2(I) heterotrimers in vitro and in vivo. J Cell Biochem 2001; 83: 84–91.

    Article  CAS  Google Scholar 

  63. Hou Z et al. Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci USA 1999; 96: 7294–7299.

    Article  CAS  Google Scholar 

  64. Ducy P et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747–754.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work presented in this review was supported in part by a grant from Children's Brittle Bone Foundation and NIH Grants AR4712 and R01 AR049688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Niyibizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niyibizi, C., Wang, S., Mi, Z. et al. Gene therapy approaches for osteogenesis imperfecta. Gene Ther 11, 408–416 (2004). https://doi.org/10.1038/sj.gt.3302199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302199

Keywords

This article is cited by

Search

Quick links