Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin

Abstract

NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as an HGF-antagonist and angiogenesis inhibitor. This study is an investigation to evaluate the feasibility of controlled release formulation of NK4 plasmid DNA in suppressing the tumor growth, and lung metastasis. Biodegradable cationized gelatin microspheres were prepared for the controlled release of an NK4 plasmid DNA. The cationized gelatin microspheres incorporating NK4 plasmid DNA could continuously release plasmid DNA over 28 days as a result of microspheres degradation following the subcutaneous injection. The injection of cationized gelatin microspheres incorporating NK4 plasmid DNA into the subcutaneous tissue significantly prolonged the survival time period of the mice bearing Lewis lung carcinoma tumor. Increases in the tumor volume and the number of lung metastatic nodules of NK4 plasmid DNA release group were suppressed to a significantly greater extent than that of solution-injected group (77.4 and 64.0%, respectively). The number of blood vessels and the apoptosis cells in the tumor tissue were significantly suppressed (80.4%) and increased (127.3%) against free NK4 plasmid DNA-injected group. Thus, the controlled release of NK4 plasmid DNA augmented angiogenesis suppression and apoptosis of tumor cells, which resulted in suppressed tumor growth. We conclude that this controlled release technology is promising to enhance the tumor suppression achieved by gene expression of NK4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nakamura T et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–443.

    Article  CAS  PubMed  Google Scholar 

  2. Zarnegar R, Michalopoulos GK . The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 1995; 129: 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto K, Nakamura T . Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 1997; 239: 639–644.

    Article  CAS  PubMed  Google Scholar 

  4. Birchmeier C, Gherardi E . Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998; 8: 404–410.

    Article  CAS  PubMed  Google Scholar 

  5. Van Belle E et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 1998; 97: 399–409.

    Article  Google Scholar 

  6. Taniyama Y et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther 2001; 8: 181–189.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda Y, Matsumoto K, Ichida T, Nakamura T . Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats. J Biochem 1995; 118: 634–639.

    Google Scholar 

  8. Mizuno S et al. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 1998; 101: 1827–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaekashiwa M et al. Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin. Am J Respir Crit Care Med 1997; 156: 1937–1944.

    Article  CAS  PubMed  Google Scholar 

  10. Ishiki Y et al. Direct evidence that hepatocyte growth factor is a hepatotrophic factor for liver regeneration and has a potent antihepatitis effect in vivo. Hepatology 1992; 16: 1227–1235.

    CAS  PubMed  Google Scholar 

  11. Ohmichi H, Matsumoto K, Nakamura T . In vivo mitogenic action of HGF on lung epithelial cells: pulmotrophic role in lung regeneration. Am J Physiol 1996; 270: L1031–L1039.

    CAS  PubMed  Google Scholar 

  12. Cortner J, Vande Woude GF, Rong S . The Met-HGF/SF autocrine signaling mechanism is involved in sarcomagenesis. EXS 1995; 74: 89–121.

    CAS  PubMed  Google Scholar 

  13. Rosen EM, Goldberg ID . Scatter factor and angiogenesis. Adv Cancer Res 1995; 67: 257–279.

    Article  CAS  PubMed  Google Scholar 

  14. Jeffers M, Rong S, Vande Woude GF . Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med 1996; 74: 505–513.

    Article  CAS  PubMed  Google Scholar 

  15. To CT, Tsao MS . The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers. Oncol Rep 1998; 5: 1013–1024.

    CAS  PubMed  Google Scholar 

  16. Jiang WG, Hiscox S, Matsumoto K, Nakamura T . Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit Rev Oncol Hematol 1999; 29: 209–248.

    Article  CAS  PubMed  Google Scholar 

  17. Date K et al. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett 1997; 420: 1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Date K et al. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 1998; 17: 3045–3054.

    Article  CAS  PubMed  Google Scholar 

  19. Kuba K et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 2000; 60: 6737–6743.

    CAS  PubMed  Google Scholar 

  20. Tomioka D et al. Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res 2001; 61: 7518–7524.

    CAS  PubMed  Google Scholar 

  21. Saga Y et al. Expression of HGF/NK4 in ovarian cancer cells suppresses intraperitoneal dissemination and extends host survival. Gene Therapy 2001; 8: 1450–1455.

    Article  CAS  PubMed  Google Scholar 

  22. Maehara N et al. Gene transduction of NK4, HGF antagonist, inhibits in vitro invasion and in vivo growth of human pancreatic cancer. Clin Exp Metast 2002; 19: 417–426.

    Article  CAS  Google Scholar 

  23. Hirao S et al. Tumor suppression effect using NK4, a molecule acting as an antagonist of HGF, on human gastric carcinomas. Cancer Gene Ther 2002; 9: 700–707.

    Article  CAS  PubMed  Google Scholar 

  24. Saimura M et al. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther 2002; 9: 799–806.

    Article  CAS  PubMed  Google Scholar 

  25. Maemondo M et al. Targeting angiogenesis and HGF function using an adenoviral vector expressing the HGF antagonist NK4 for cancer therapy. Mol Ther 2002; 5: 177–185.

    Article  CAS  PubMed  Google Scholar 

  26. Emilien G et al. Impact of genomics on drug discovery and clinical medicine. Q J Med 2000; 93: 391–423.

    Article  CAS  Google Scholar 

  27. Wu Q, Moyana T, Xiang J . Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 2001; 1: 101–122.

    Article  CAS  PubMed  Google Scholar 

  28. Merdan T, Kopecek J, Kissel T . Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 2002; 54: 715–758.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuura M et al. Polycation liposome-mediated gene transfer in vivo. Biochim Biophys Acta 2003; 1612: 136–143.

    Article  CAS  PubMed  Google Scholar 

  30. Tabata Y, Ikada Y . Protein release from gelatin matrices. Adv Drug Deliv Rev 1998; 31: 287–301.

    Article  CAS  PubMed  Google Scholar 

  31. Cohen H et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Therapy 2000; 7: 1896–1905.

    Article  CAS  PubMed  Google Scholar 

  32. Perez C et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release 2001; 75: 211–224.

    Article  CAS  PubMed  Google Scholar 

  33. Kushibiki T et al. In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J Control Release 2003; 90: 207–216.

    Article  CAS  PubMed  Google Scholar 

  34. Fukunaka Y et al. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J Control Release 2002; 80: 333–343.

    Article  CAS  PubMed  Google Scholar 

  35. Mullen PM et al. Strength of conjugate binding to plasmid DNA affects degradation rate and expression level in vivo. Biochim Biophys Acta 2000; 1523: 103–110.

    Article  CAS  PubMed  Google Scholar 

  36. Moret I et al. Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 2001; 76: 169–181.

    Article  CAS  PubMed  Google Scholar 

  37. Park S, Healy KE . Nanoparticulate DNA packaging using terpolymers of poly(lysine-g-(lactide-b-ethylene glycol)). Bioconjug Chem 2003; 14: 311–319.

    Article  CAS  PubMed  Google Scholar 

  38. Zauner W et al. Glycerol enhancement of ligand-polylysine/DNA transfection. Biotecniques 1996; 20: 905–913.

    Article  CAS  Google Scholar 

  39. Midoux P, Monsigny M . Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjugate Chem 1999; 10: 406–411.

    Article  CAS  Google Scholar 

  40. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  41. Sim BK, MacDonald NJ, Gubish ER . Angiostatin and endostatin: endogenous inhibitors of tumor growth. Cancer Metast Rev 2000; 19: 181–190.

    Article  CAS  Google Scholar 

  42. Kuba K et al. Kringle 1-4 of hepatocyte growth factor inhibits proliferation and migration of human microvascular endothelial cells. Biochem Biophys Res Commun 2000; 279: 846–852.

    Article  CAS  PubMed  Google Scholar 

  43. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    Article  CAS  PubMed  Google Scholar 

  44. O'Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.

    Article  CAS  PubMed  Google Scholar 

  45. Snyder SL, Sobocinski PZ . An improved 2,4,6-trinitroimproving benzenesulfonic acid method for the determination of amines. Anal Biochem 1975; 64: 284–288.

    Article  CAS  PubMed  Google Scholar 

  46. Chan HC, Ruyechan WT, Wetmur JG . In vitro iodination of low complexity nucleic acids without chain scission. Biochemistry 1976; 15: 5487–5491.

    Article  CAS  PubMed  Google Scholar 

  47. Gavrieli Y, Sherman Y, Ben-Sasson SA . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushibiki, T., Matsumoto, K., Nakamura, T. et al. Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin. Gene Ther 11, 1205–1214 (2004). https://doi.org/10.1038/sj.gt.3302285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302285

Keywords

This article is cited by

Search

Quick links