Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses

Abstract

Based on observations that DBA/2 mice develop a highly specific response towards an HLA-Cw3-derived epitope, consisting entirely of CD8+CD62L-Vβ10+ cells, we have established an in vivo mouse model for screening a variety of immunization approaches. Responder cells were readily detectable in small samples of the peripheral blood using three-color FACS analysis. This permitted multiple, sequential determination of CD8+ T-cell responses in living animals at a very high degree of precision. In vivo electroporation delivery of expression construct plasmids, outclassed the other approaches tested. Dominant, specific responses were induced already upon a single administration. Both the peak and the longevity of the response resembled those that are generated by the most active viral infections. The induced CTLs rejected epitope-bearing tumor cells in vivo and released interferon-γ upon stimulation with the correct MHC::peptide combination in vitro. The potent in vivo response was not influenced by known modulators of the innate immune system, such as CpG DNA and LPS content. In vivo electroporation thus deserves consideration in the future in antitumor and antiviral immunization approaches, where CD8+ T cells play a predominant role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Murali-Krishna K et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998; 8: 177–187.

    Article  CAS  PubMed  Google Scholar 

  2. Hou S et al. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 1994; 369: 652–654.

    Article  CAS  PubMed  Google Scholar 

  3. MacDonald HR et al. Oligoclonal expansion of major histocompatibility complex class I-restricted cytolytic T lymphocytes during a primary immune response in vivo: direct monitoring by flow cytometry and polymerase chain reaction. J Exp Med 1993; 177: 1487–1492.

    Article  CAS  PubMed  Google Scholar 

  4. Casanova JL et al. H-2-restricted cytolytic T lymphocytes specific for HLA display T cell receptors of limited diversity. J Exp Med 1992; 176: 439–447.

    Article  CAS  PubMed  Google Scholar 

  5. Maryanski JL et al. Single-cell PCR analysis of TCR repertoires selected by antigen in vivo: a high magnitude CD8 response is comprised of very few clones. Immunity 1996; 4: 47–55.

    Article  CAS  PubMed  Google Scholar 

  6. Bradley LM et al. Characterization of antigen-specific CD4+ effector T cells in vivo: immunization results in a transient population of MEL-14-, CD45RB-helper cells that secretes interleukin 2 (IL-2), IL-3, IL-4, and interferon gamma. J Exp Med 1991; 174: 547–559.

    Article  CAS  PubMed  Google Scholar 

  7. Walker PR et al. Distinct phenotypes of antigen-selected CD8 T cells emerge at different stages of an in vivo immune response. J Immunol 1995; 155: 3443–3452.

    CAS  PubMed  Google Scholar 

  8. Rizzuto G et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96: 6417–6422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Widera G et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 2000; 164: 4635–4640.

    Article  CAS  PubMed  Google Scholar 

  10. Zucchelli S et al. Enhancing B- and T-cell immune response to a hepatitis c virus E2 DNA vaccine by intramuscular electrical gene transfer. J Virol 2000; 74: 11598–11607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buschle M et al. Transloading of tumor antigen-derived peptides into antigen-presenting cells. Proc Natl Acad Sci USA 1997; 94: 3256–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt W et al. Transloading of tumor cells with foreign MHC I peptide ligand: a novel general strategy for the generation of potent cancer vaccines. Proc Natl Acad Sci USA 1996; 93: 9759–9763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deres K et al. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 1989; 342: 561–564.

    Article  CAS  PubMed  Google Scholar 

  14. Condreay JP et al. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci USA 1999; 96: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hofmann C et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA 1995; 92: 10099–10103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Busch DH et al. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 1998; 8: 353–362.

    Article  CAS  PubMed  Google Scholar 

  17. Hemmi H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  PubMed  Google Scholar 

  18. Sato Y et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996; 273: 352–354.

    Article  CAS  PubMed  Google Scholar 

  19. Mizushima S, Nagata S . pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 1990; 18: 5322–5322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis HL et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 1998; 160: 870–876.

    CAS  PubMed  Google Scholar 

  21. Cotten M et al. Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther 1995; 1: 239–246.

    Google Scholar 

  22. Aliprantis AO et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999; 285: 736–739.

    Article  CAS  PubMed  Google Scholar 

  23. Tapping RI et al. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol 2000; 165: 5780–5787.

    Article  CAS  PubMed  Google Scholar 

  24. BenMohamed L et al. Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. Eur J Immunol 1997; 27: 1242–1253.

    Article  CAS  PubMed  Google Scholar 

  25. Schneider J et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 1998; 4: 397–402.

    Article  CAS  PubMed  Google Scholar 

  26. Barouch DH et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 2000; 290: 486–492.

    Article  CAS  PubMed  Google Scholar 

  27. Mir LM et al. Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C R Acad Sci III 1998; 321: 893–899.

    Article  CAS  PubMed  Google Scholar 

  28. Aihara H, Miyazaki J . Gene transfer into muscle by electro-poration in vivo. Nat Biotechnol 1998; 16: 867–870.

    Article  CAS  PubMed  Google Scholar 

  29. Akbari O et al. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999; 189: 169–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boyle JS et al. Inhibitory effect of lipopolysaccharide on immune response after DNA immunization is route dependent. DNA Cell Biol 1998; 17: 343–348.

    Article  CAS  PubMed  Google Scholar 

  31. Weeratna R et al. Reduction of antigen expression from DNA vaccines by coadministered oligodeoxynucleotides. Antisense Nucl Acid Drug Dev 1998; 8: 351–356.

    Article  CAS  Google Scholar 

  32. Paster W et al. Structural elements of a protein antigen determine immunogenicity of the embedded MHC class I-restricted T cell epitope. J Immunol 2002; 169: 2937–2946.

    Article  CAS  PubMed  Google Scholar 

  33. Kalat M et al. In vivo plasmid electroporation induces tumor antigen-specific CD8+ T cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res 2002; 62: 5489–5494.

    CAS  PubMed  Google Scholar 

  34. Gunzburg WH et al. A mammary-specific promoter directs expression of growth hormone not only to the mammary gland, but also to Bergman glia cells in transgenic mice. Mol Endocrinol 1991; 5: 123–133.

    Article  CAS  PubMed  Google Scholar 

  35. Attuil V et al. Comparative T cell receptor repertoire selection by antigen after adoptive transfer: a glimpse at an antigen-specific preimmune repertoire. Proc Natl Acad Sci USA 2000; 97: 8473–8478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J-C Cerottini, A Himmler, and W Günzburg for reagents, E Wagner and J Maryanski for their discussions at the initial phase of the project, and T Decker and GR Adolf for their suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Paster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paster, W., Zehetner, M., Kalat, M. et al. In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Ther 10, 717–724 (2003). https://doi.org/10.1038/sj.gt.3301942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301942

Keywords

This article is cited by

Search

Quick links