Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intravascular naked DNA vaccine encoding glycoprotein B induces protective humoral and cellular immunity against herpes simplex virus type 1 infection in mice

Abstract

Naked plasmid DNA (pDNA) vaccine expressing herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) was tested for protective activity against acute HSV-1 infection in mice. The pDNA was intravenously injected into Balb/c mice via their tail vein under high pressure, and the vaccination was performed two times at an interval of 7 days. The gB gene vaccination significantly protected the mice from subsequent intraperitoneal challenge with a lethal dose of HSV-1, which killed all the animals given control plasmid or saline. The protective activity was correlated with the dose of the plasmid inoculated, the survival rate reaching 83% in mice vaccinated with 5 μg of pDNA. The vaccinated mice were also protected from latent HSV infection. The immunized mice showed significant elevation in neutralizing antibody against HSV-1 as well as serum levels of interleukin-12 (IL-12) and interferon-γ (IFN-γ). When mice were immunized with 5 μg of an Epstein–Barr virus (EBV)-based plasmid vector harboring the gB, the cytotoxic T lymphocytes (CTLs) activity and proliferative response for HSV-1 were also induced. The results strongly suggest that intravenous immunization of naked pDNA may induce humoral and cellular immune responses against the virus, leading to a significant prophylactic outcome against HSV-1 infection in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tighe H, Corr M, Roman M, Raz E . Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 1998; 19: 89–97.

    Article  CAS  PubMed  Google Scholar 

  2. Wolff JA et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  3. Liu F, Song YK, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    Article  CAS  PubMed  Google Scholar 

  5. Cui FD et al. Highly efficient gene transfer into murine liver achieved by intravenous administration of naked Epstein–Barr virus (EBV)-based plasmid vectors. Gene Therapy 2001; 8: 1508–1513.

    Article  CAS  PubMed  Google Scholar 

  6. Rouse BT et al. DNA vaccines and immunity to herpes simplex virus. Curr Top Microbiol Immunol 1998; 226: 69–78.

    CAS  PubMed  Google Scholar 

  7. Bernstein DI, Stanberry LR . Herpes simplex virus vaccines. Vaccine 1999; 17: 1681–1689.

    Article  CAS  PubMed  Google Scholar 

  8. Ghiasi H et al. Expression of seven herpes simplex virus type 1 glycoproteins (gB, gC, gD, gE, gG, gH and gI): comparative protection against lethal challenge in mice. J Virol 1994; 68: 2118–2126.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanke T, Graham FL, Rosenthal KL, Johnson DC . Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J Virol 1991; 65: 1177–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Burke RL . Contemporary approaches to vaccination against herpes simplex virus. Curr Top Microbiol Immunol 1992; 179: 137–158.

    CAS  PubMed  Google Scholar 

  11. Cose SC, Kelly JM, Carbone FR . Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential Vβ bias. J Virol 1995; 69: 5849–5852.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu TM et al. Induction and persistence of a cytotoxic T lymphocyte (CTL) response against a herpes simplex virus-specific CTL epitope expressed in a cellular protein. Virology 1996; 222: 269–274.

    Article  CAS  PubMed  Google Scholar 

  13. Mikloska Z, Cunningham AL . Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 1998; 79: 353–361.

    Article  CAS  PubMed  Google Scholar 

  14. Chen ZY et al. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 2001; 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  15. Stoll SM et al. Epstein–Barr virus/human vector provides high-level, long-term expression of alpha1-antitrypsin in mice. Mol Ther 2001; 4: 122–129.

    Article  CAS  PubMed  Google Scholar 

  16. Lui VWY, He Y, Falo L, Huang L . Systemic administration of naked DNA encoding interleukin 12 for the treatment of human papillomavirus DNA-positive tumor. Hum Gene Ther 2002; 13: 177–185.

    Article  CAS  PubMed  Google Scholar 

  17. Itokawa Y et al. Hydrodynamics-based immuno-gene therapy against metastatic liver tumor and peritoneal carcinomatosis. Mol Ther 2002; 5: S101 (Abstract 304).

    Google Scholar 

  18. Kishida T et al. Complete rejection of metastatic lymphoma in murine liver by in vivo transduction with IL-21 and IL-15 genes. Mol Ther 2002; 5: S120–121, (Abstract 366).

    Google Scholar 

  19. Ulmer JB et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259: 1745–1749.

    Article  CAS  PubMed  Google Scholar 

  20. Raz E et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA 1994; 91: 9519–9523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zarozinski CC et al. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J Immunol 1995; 154: 4010–4017.

    CAS  PubMed  Google Scholar 

  22. Yokoyama M, Zhang J, Whitton JL . DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J Virol 1995; 69: 2684–2688.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuller DH, Haynes JR . A qualitative progression in HIV type 1 glycoprotein 120-specific cytotoxic cellular and humoral immune responses in mice receiving a DNA-based glycoprotein 120 vaccine. AIDS Res Hum Retroviruses 1994; 10: 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  24. Davis HL, Schirmbeck R, Reimann J, Whalen RG . DNA-mediated immunization in mice induces a potent MHC class I-restricted cytotoxic T lymphocyte response to the hepatitis B envelope protein. Hum Gene Ther 1995; 6: 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  25. Geissler M, Gesien A, Tokushige K, Wands JR . Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 1997; 158: 1231–1237.

    CAS  PubMed  Google Scholar 

  26. Lin H et al. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 1990; 82: 2217–2221.

    Article  CAS  PubMed  Google Scholar 

  27. Manickan E et al. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J Immunol 1995; 155: 259–265.

    CAS  PubMed  Google Scholar 

  28. Kriesel JD, Spruance SL, Daynes RA, Araneo BA . Nucleic acid vaccine encoding gD2 protects mice from herpes simplex virus type 2 disease. J Infect Dis 1996; 173: 536–541.

    Article  CAS  PubMed  Google Scholar 

  29. Kuklin N et al. Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 1997; 71: 3138–3145.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mester JC, Twomey TA, Tepe ET, Bernstein DI . Immunity induced by DNA immunization with herpes simplex virus type 2 glycoproteins B and C. Vaccine 2000; 18: 875–883.

    Article  Google Scholar 

  31. Caselli E et al. Mice genetic immunization with plasmid DNA encoding a secreted form of HSV-1 gB induces a protective immune response against herpes simplex virus type 1 infection. Intervirology 2001; 44: 1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bourne N, Stanberry LR, Bernstein DI, Lew D . DNA immunization against experimental genital herpes simplex virus infection. J Infect Dis 1996; 173: 800–807.

    Article  CAS  PubMed  Google Scholar 

  33. Ghiasi H et al. Vaccination of mice with herpes simplex virus type 1 glycoprotein D DNA produces low levels of protection against lethal HSV-1 challenge. Antiviral Res 1995; 28: 147–157.

    Article  CAS  PubMed  Google Scholar 

  34. McClements WL, Armstrong ME, Keys RD, Liu MA . Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease. Proc Natl Acad Sci USA 1996; 93: 11414–11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sin JI et al. In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J Virol 1999; 73: 501–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rous RJD et al. Induction in vitro of primary cytotoxic T-lymphocyte responses with DNA encoding herpes simplex virus proteins. J Virol 1994; 68: 5685–5689.

    Google Scholar 

  37. Manickan E et al. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol 1997; 61: 125–132.

    Article  CAS  PubMed  Google Scholar 

  38. Perelygina L, Patrusheva I, Zurkuhlen H, Hilliard JK . Characterization of B virus glycoprotein antibodies induced by DNA immunization. Arch Virol 2002; 147: 2057–2073.

    Article  CAS  PubMed  Google Scholar 

  39. Sin JI et al. IL-12 gene as a DNA vaccine adjuvant in herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J Immunol 1999; 162: 2912–2921.

    CAS  PubMed  Google Scholar 

  40. Johnson RM, Lancki DW, Fitch FW, Spear PG . Herpes simplex virus glycoprotein D is recognized as antigen by CD4+ and CD8+ T lymphocytes from infected mice. Characterization of T cell clones. J Immuol 1990; 145: 702–710.

    CAS  Google Scholar 

  41. Koelle DM et al. Antigenic specificities of human CD4+ T-cell clones recovered from recurrent genital herpes simplex virus type 2 lesions. J Virol 1994; 68: 2803–2810.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nugent CT, Wolcott RM, Chervenak R, Jennings SR . Analysis of cytolytic T-lymphocyte response to herpes simplex virus type 1 glycoprotein B during primary and secondary infection. J Virol 1994; 68: 7644–7648.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghiasi H et al. The importance of MHC-I and II responses in vaccine efficacy against lethal herpes simplex virus type 1 challenge. Immunology 1997; 91: 430–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kita M, Tong LJ, Imanishi J . Induction de I’ARN messager des cytokines par I’infection de I’herpes simplex virus chez la souris. C R Soc Biol 1993; 187: 561–568.

    CAS  Google Scholar 

  45. Rogers JV et al. Murine response to DNA encoding herpes simplex virus type-1 glycoprotein D targeted to the liver. Vaccine 2000; 18: 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  46. Ambinder RF et al. Functional domains of Epstein–Barr virus nuclear antigen EBNA-1. J Virol 1991; 65: 1466–1478.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fischer N et al. Epstein–Barr virus nuclear antigen 1 forms a complex with the nuclear transporter karyopherin α2. J Biol Chem 1997; 272: 3999–4005.

    Article  CAS  PubMed  Google Scholar 

  48. Jankelevich S, Kolman JL, Bodnar JW, Miller G . A nuclear matrix attachment region organizes the Epstein–Barr viral plasmid in Raji cells into a single DNA domain. EMBO J 1992; 11: 1165–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wysokenski DA, Yates JL . Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein–Barr virus. J Virol 1989; 63: 2657–2666.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gahn TA, Sugden B . An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of Epstein–Barr virus LMP gene. J Virol 1995; 69: 2633–2636.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mazda O, Satoh E, Yasutomi K, Imanishi J . Extremely efficient gene transfection into lympho-hematopoietic cell lines by Epstein–Barr virus-based vectors. J Immunol Methods 1997; 204: 143–151.

    Article  CAS  PubMed  Google Scholar 

  52. Maruyama-Tabata H et al. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer. Gene Therapy 2000; 7: 53–60.

    Article  CAS  PubMed  Google Scholar 

  53. Harada Y et al. Highly efficient suicide gene expression in hepatocelluar carcinoma cells by Epstein–Barr virus-based plasmid vectors combined with polyamidoamine dendrimer. Cancer Gene Ther 2000; 7: 27–36.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka S et al. Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein–Barr virus (EBV)-based plasmid vector carrying the CEA-promoter. Cancer Gene Ther 2000; 7: 1241–1250.

    Article  CAS  PubMed  Google Scholar 

  55. Kishida T et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice. Gene Therapy 2001; 8: 1234–1240.

    Article  CAS  PubMed  Google Scholar 

  56. Asada H et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 2002; 5: 609–616.

    Article  CAS  PubMed  Google Scholar 

  57. Nakanishi H et al. Nonviral genetic transfer of Fas ligand induced significant growth suppression and apoptotic tumor cell death in prostate cancer in vivo. Gene Therapy 2003; 10: 434–442.

    Article  CAS  PubMed  Google Scholar 

  58. Mazda O . Application of Epstein–Barr virus (EBV) and its genetic elements to gene therapy. In: Cid-Arregui A, Garcia-Carranca A (eds). Viral Vectors: Basic Science and Gene Therapy. Eaton Publishing: Natick, 2000, pp 325–337.

    Google Scholar 

  59. Mazda O . Improvement of nonviral gene therapy by Epstein–Barr virus (EBA)-based plasmid vectors. Curr Gene Ther 2002; 2: 379–392.

    Article  CAS  PubMed  Google Scholar 

  60. Tomiyasu K et al. Direct intra-cardiomuscular transfer of β2-adrenergic receptor gene augments cardiac output in cardiomyopathic hamsters. Gene Therapy 2000; 7: 2087–2093.

    Article  CAS  PubMed  Google Scholar 

  61. Satoh E et al. Successful transfer of ADA gene in vitro into human peripheral blood CD34+ cells by transfecting EBV-based episomal vectors. FEBS Lett 1998; 441: 39–42.

    Article  CAS  PubMed  Google Scholar 

  62. Mazda O et al. Non-viral strategies for immuno-gene therapy. In: Cancro MP (ed). Recent Research Developments in Immunology Vol. 2. Research Signpost: Trivandrum, 2000, pp 273–281.

    Google Scholar 

  63. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  64. Yates JL, Warren N, Sugden B . Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 1985; 313: 812–815.

    Article  CAS  PubMed  Google Scholar 

  65. Con RW et al. Extended duration of herpes simplex virus DNA in genital lesions detected by the polymerase chain reaction. J Infect Dis 1991; 164: 757–760.

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by a grant in aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, FD., Asada, H., Kishida, T. et al. Intravascular naked DNA vaccine encoding glycoprotein B induces protective humoral and cellular immunity against herpes simplex virus type 1 infection in mice. Gene Ther 10, 2059–2066 (2003). https://doi.org/10.1038/sj.gt.3302114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302114

Keywords

This article is cited by

Search

Quick links