Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Congenic strains displaying similar clinical phenotype of arthritis represent different immunologic models of inflammation

Abstract

Proteoglycan (PG)-induced arthritis (PGIA) is an autoimmune inflammatory disease controlled by multiple genes in the murine genome. BALB/c × DBA/2 congenic strains carrying four major PGIA chromosome loci were immunized, and positions of loci on chromosomes 3, 7, 8 and 19 (loci Pgia26, Pgia21, Pgia4 and Pgia12, respectively) were confirmed. Each congenic strain exhibited a different pattern of regulation of clinical and immunologic features of PGIA, and these features were significantly influenced by gender. Locus Pgia26 delayed PGIA onset in males and females, and the effect was associated with a lower rate of antigen-induced lymphocyte proliferation and lower production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4). Pgia12 similarly delayed onset in males, but the effect was achieved by elevated proliferation of PG-specific lymphocytes and enhanced production of IFN-γ and IL-4. The effect of the Pgia21 locus was arthritis-suppressive in females but PGIA-permissive in congenic males. These opposite effects are attributed to two-fold higher serum autoantibody and IL-6 levels in males than in females. Our study supports the idea that each congenic strain represents a different immunologic subtype of PGIA, providing an explanation for the complex etiology and various clinical phenotypes of rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lynn AH, Kwoh CK, Venglish CM, Aston CE, Chakravarti A . Genetic epidemiology of rheumatoid arthritis. Am J Hum Genet 1995; 57: 150–159.

    Article  CAS  Google Scholar 

  2. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43: 30–37.

    Article  CAS  Google Scholar 

  3. Choi S, Rho Y, Ji JD, Song GG, Lee Y . Genome scan meta-analysis of rheumatoid arthritis. Rheumatology (Oxford) 2006; 45: 166–170.

    Article  CAS  Google Scholar 

  4. Cornelis F, Faure S, Martinez M, Prud'homme JF, Fritz P, Dib C et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10746–10750.

    Article  CAS  Google Scholar 

  5. Shiozawa S, Hayashi S, Tsukamoto Y, Goko H, Kawasaki H, Wada T et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int Immunol 1998; 10: 1891–1895.

    Article  CAS  Google Scholar 

  6. Barton A, Eyre S, Myerscough A, Brintnell B, Ward D, Ollier WE et al. High resolution linkage and association mapping identifies a novel rheumatoid arthritis susceptibility locus homologous to one linked to two rat models of inflammatory arthritis. Hum Mol Genet 2001; 10: 1901–1906.

    Article  CAS  Google Scholar 

  7. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Monteiro J et al. A genome-wide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet 2001; 68: 927–936.

    Article  CAS  Google Scholar 

  8. John S, Eyre S, Myerscough A, Barrett J, Silman A, Ollier W et al. Linkage and association analysis of candidate genes in rheumatoid arthritis. J Rheumatol 2001; 28: 1752–1755.

    CAS  PubMed  Google Scholar 

  9. MacKay K, Eyre S, Myerscough A, Milicic A, Barton A, Laval S et al. Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum 2002; 46: 632–639.

    Article  CAS  Google Scholar 

  10. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Etzel C et al. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48: 906–916.

    Article  CAS  Google Scholar 

  11. Osorio Y, Fortea J, Bukulmez H, Petit-Teixeira E, Michou L, Pierlot C et al. Dense genome-wide linkage analysis of rheumatoid arthritis, including covariates. Arthritis Rheum 2004; 50: 2757–2765.

    Article  Google Scholar 

  12. Cleland LG . Animal models of rheumatoid arthritis. Br J Rheumatol 1996; 35: 1041–1042.

    Article  CAS  Google Scholar 

  13. Holmdahl R . Dissection of the genetic complexity of arthritis using animal models. J Autoimmun 2003; 21: 99–103.

    Article  CAS  Google Scholar 

  14. Kurreeman FA, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, Stoeken-Rijsbergen G et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 2007; 4: e278.

    Article  Google Scholar 

  15. Wang Y, Kristan J, Hao L, Lenkoski CS, Shen Y, Matis LA . A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 2000; 164: 4340–4347.

    Article  CAS  Google Scholar 

  16. Mikecz K, Glant TT, Poole AR . Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum 1987; 30: 306–318.

    Article  CAS  Google Scholar 

  17. Glant TT, Finnegan A, Mikecz K . Proteoglycan-induced arthritis: immune regulation, cellular mechanisms and genetics. Crit Rev Immunol 2003; 23: 199–250.

    Article  CAS  Google Scholar 

  18. Adarichev VA, Bardos T, Christodoulou S, Phillips MT, Mikecz K, Glant TT . Major histocompatibility complex controls susceptibility and dominant inheritance, but not the severity of the disease in mouse models of rheumatoid arthritis. Immunogenetics 2002; 54: 184–192.

    Article  CAS  Google Scholar 

  19. Adarichev VA, Nesterovitch AB, Bardos T, Biesczat D, Chandrasekaran R, Vermes C et al. Sex effect on clinical and immunological quantitative trait loci in a murine model of rheumatoid arthritis. Arthritis Rheum 2003; 48: 1708–1720.

    Article  Google Scholar 

  20. Otto JM, Cs-Szabó G, Gallagher J, Velins S, Mikecz K, Buzas EI et al. Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis. Arthritis Rheum 1999; 42: 2524–2531.

    Article  CAS  Google Scholar 

  21. Otto JM, Chandrasekaran R, Vermes C, Mikecz K, Finnegan A, Rickert SE et al. A genome scan using a novel genetic cross identifies new susceptibility loci and traits in a mouse model of rheumatoid arthritis. J Immunol 2000; 165: 5278–5286.

    Article  CAS  Google Scholar 

  22. Glant TT, Adarichev VA . Immunogenetics of experimentally induced arthritis. In: Falus A (ed). Immunogenomics and Human Disease. John Wiley & Sons Ltd: Chichester, 2006, pp 271–297.

    Chapter  Google Scholar 

  23. Adarichev VA, Valdez JC, Bardos T, Finnegan A, Mikecz K, Glant TT . Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J Immunol 2003; 170: 2283–2292.

    Article  CAS  Google Scholar 

  24. Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 1997; 17: 280–284.

    Article  CAS  Google Scholar 

  25. Katz D, Lehrer S, Galan O, Lachmi B, Cohen S, Inbar I et al. Unique immunomodulating properties of dimethyl dioctadecyl ammonium bromide (DDA) in experimental viral vaccines. Adv Exp Med Biol 1996; 397: 115–125.

    Article  CAS  Google Scholar 

  26. Bardos T, Mikecz K, Finnegan A, Zhang J, Glant TT . T and B cell recovery in arthritis adoptively transferred to SCID mice: antigen-specific activation is required for restoration of autopathogenic CD4+ Th1 cells in a syngeneic system. J Immunol 2002; 168: 6013–6021.

    Article  CAS  Google Scholar 

  27. Adarichev VA, Vermes C, Hanyecz A, Mikecz K, Bremer E, Glant TT . Gene expression profiling in murine autoimmune arthritis during the initiation and progression of joint inflammation. Arthritis Res Ther 2005; 7: R196–R207.

    Article  CAS  Google Scholar 

  28. Finnegan A, Mikecz K, Tao P, Glant TT . Proteoglycan (aggrecan)-induced arthritis in BALB/c mice is a Th1-type disease regulated by Th2 cytokines. J Immunol 1999; 163: 5383–5390.

    CAS  PubMed  Google Scholar 

  29. Glant TT, Mikecz K, Arzoumanian A, Poole AR . Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 1987; 30: 201–212.

    Article  CAS  Google Scholar 

  30. Gulko PS, Kawahito Y, Remmers EF, Reese VR, Wang JP, Dracheva SV et al. Identification of a new non-major histocompatibility complex genetic locus on chromosome 2 that controls disease severity in collagen-induced arthritis in rats. Arthritis Rheum 1998; 41: 2122–2131.

    Article  CAS  Google Scholar 

  31. Brenner M, Meng HC, Yarlett NC, Griffiths MM, Remmers EF, Wilder RL et al. The non-major histocompatibility complex quantitative trait locus Cia10 contains a major arthritis gene and regulates disease severity, pannus formation, and joint damage. Arthritis Rheum 2005; 52: 322–332.

    Article  CAS  Google Scholar 

  32. Cheng LS, Chiang SL, Tu HP, Chang SJ, Wang TN, Ko AM et al. Genomewide scan for gout in Taiwanese aborigines reveals linkage to chromosome 4q25. Am J Hum Genet 2004; 75: 498–503.

    Article  CAS  Google Scholar 

  33. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 2004; 89: 5862–5865.

    Article  CAS  Google Scholar 

  34. Viken MK, Amundsen SS, Kvien TK, Boberg KM, Gilboe IM, Lilleby V et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun 2005; 6: 271–273.

    Article  CAS  Google Scholar 

  35. Bergsteinsdottir K, Yang H-T, Pettersson U, Holmdahl R . Evidence for common autoimmune disease genes controlling onset, severity, and chronicity based on experimental models for multiple sclerosis and rheumatoid arthritis. J Immunol 2000; 164: 1564–1568.

    Article  CAS  Google Scholar 

  36. Wise CA, Bennett LB, Pascual V, Gillum JD, Bowcock AM . Localization of a gene for familial recurrent arthritis. Arthritis Rheum 2000; 43: 2041–2045.

    Article  CAS  Google Scholar 

  37. Lu S, Nordquist N, Holmberg J, Olofsson P, Pettersson U, Holmdahl R . Both common and unique susceptibility genes in different rat strains with pristane-induced arthritis. Eur J Hum Genet 2002; 10: 475–483.

    Article  CAS  Google Scholar 

  38. Teuscher C, Butterfield RJ, Ma RZ, Zachary JF, Doerge RW, Blankenhorn EP . Sequence polymorphisms in chemokines Scya1 (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/nonrelapsing experimental allergic encephalomyelitis. J Immunol 1999; 163: 2262–2266.

    CAS  PubMed  Google Scholar 

  39. Chapman K, Mustafa Z, Irven C, Carr AJ, Clipsham K, Smith A et al. Osteoarthritis-susceptibility locus on chromosome 11q, detected by linkage. Am J Hum Genet 1999; 65: 167–174.

    Article  CAS  Google Scholar 

  40. Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 2005; 37: 138–144.

    Article  CAS  Google Scholar 

  41. Adarichev VA, Nesterovitch AB, Biesczat DC, Glant TT . Genome scan for arthritis genes revealed significant chromosome locus–locus interation in mouse proteoglycan-induced arthritis. Arthritis Rheum 2003; 48: S229.

    Article  Google Scholar 

  42. Abramson N, Alper CA, Lachmann PJ, Rosen FS, Jandl JH . Deficiency of C3 inactivator in man. J Immunol 1971; 107: 19–27.

    CAS  PubMed  Google Scholar 

  43. Weinberg K, Parkman R . Severe combined immunodeficiency due to a specific defect in the production of interleukin-2. N Engl J Med 1990; 322: 1718–1723.

    Article  CAS  Google Scholar 

  44. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  Google Scholar 

  45. Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020–3023.

    Article  CAS  Google Scholar 

  46. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  Google Scholar 

  47. Carlton VE, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 2005; 77: 567–581.

    Article  CAS  Google Scholar 

  48. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  Google Scholar 

  49. Furuya T, Salstrom JL, McCall-Vining S, Cannon GW, Joe B, Remmers EF et al. Genetic dissection of a rat model for rheumatoid arthritis: significant gender influences on autosomal modifier loci. Hum Mol Genet 2000; 9: 2241–2250.

    Article  CAS  Google Scholar 

  50. Yang H-T, Jirholt J, Svensson L, Sundvall M, Jansson L, Pettersson U et al. Identification of genes controlling collagen-induced arthritis in mice: striking homology with susceptibility loci previously identified in the rat. J Immunol 1999; 163: 2916–2921.

    CAS  PubMed  Google Scholar 

  51. Karlsson J, Johannesson M, Lindvall T, Wernhoff P, Holmdahl R, Andersson A . Genetic interactions in Eae2 control collagen-induced arthritis and the CD4+/CD8+ T cell ratio. J Immunol 2005; 174: 533–541.

    Article  CAS  Google Scholar 

  52. Hanyecz A, Berlo SE, Szanto S, Broeren CPM, Mikecz K, Glant TT . Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype. Arthritis Rheum 2004; 50: 1665–1676.

    Article  CAS  Google Scholar 

  53. Glant TT, Mikecz K . Proteoglycan aggrecan-induced arthritis. A murine autoimmune model of rheumatoid arthritis. Methods Mol Med 2004; 102: 313–338.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research Grants P01 AR045652 and R01 AR040310 of the National Institutes of Health (USA), the JO Galante, MD Endowment Chair (Rush University Medical Center, Chicago, IL, USA) and The Grainger Foundation (Chicago, IL, USA). We thank for human cartilage samples received from surgeons of Midwest Orthopedics (Rush University Medical Center, Chicago, IL, USA) and technical support of Dr A Nesterovitch and Dr G Hutas (Rush University Medical Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T T Glant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adarichev, V., Vegvari, A., Szabo, Z. et al. Congenic strains displaying similar clinical phenotype of arthritis represent different immunologic models of inflammation. Genes Immun 9, 591–601 (2008). https://doi.org/10.1038/gene.2008.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.54

Keywords

This article is cited by

Search

Quick links