Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential expression in lupus-associated IL-10 promoter single-nucleotide polymorphisms is mediated by poly(ADP-ribose) polymerase-1

Abstract

Systemic lupus erythematosus (SLE) is a complex, multifactorial autoimmune disease characterized by the dysregulation of T and B cells that leads to hyperactivity of B cells and production of autoantibodies, and involves both environmental and genetic factors. Interleukin-10 (IL-10) is a candidate susceptibility gene in SLE. In particular, three IL-10 promoter single-nucleotide polymorphisms (SNPs; −1082A/G, −819T/C and −592A/C) are strongly associated with the pathogenesis of SLE. We found that the homozygous GCC haplotype linked to greater SLE severity confers higher IL-10 gene transcriptional activity than the ATA haplotype in macrophages that encounter apoptotic cells, because of the differential DNA binding to the −592 SNP by a nuclear protein uniquely induced by apoptotic cells. We identified this protein as poly(ADP-ribose) polymerase-1, confirmed its physiological role and characterized its molecular properties in modulating IL-10 production during phagocytosis of apoptotic cells. This study unveils a novel direct link between DNA damage repair/apoptosis pathways and IL-10-mediated immune regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311–318.

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence JS, Martins CL, Drake GL . A family survey of lupus erythematosus. 1. Heritability. J Rheumatol 1987; 14: 913–921.

    CAS  PubMed  Google Scholar 

  3. Vyse TJ, Kotzin BL . Genetic basis of systemic lupus erythematosus. Curr Opin Immunol 1996; 8: 843–851.

    Article  CAS  PubMed  Google Scholar 

  4. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK . Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1994; 1: 219–229.

    Article  CAS  PubMed  Google Scholar 

  5. Wakeland EK, Wandstrat AE, Liu K, Morel L . Genetic dissection of systemic lupus erythematosus. Curr Opin Immunol 1999; 11: 701–707.

    Article  CAS  PubMed  Google Scholar 

  6. Kelly JA, Moser KL, Harley JB . The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun 2002; 3 (Suppl 1): S71–S85.

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins BR, Wong KL, Wong RW, Chan KH, Dunckley H, Serjeantson SW . Strong association between the major histocompatibility complex and systemic lupus erythematosus in southern Chinese. J Rheumatol 1987; 14: 1128–1131.

    CAS  PubMed  Google Scholar 

  8. Ratnoff WD . Inherited deficiencies of complement in rheumatic diseases. Rheum Dis Clin North Am 1996; 22: 75–94.

    Article  CAS  PubMed  Google Scholar 

  9. Duits AJ, Bootsma H, Derksen RH, Spronk PE, Kater L, Kallenberg CG et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 1995; 38: 1832–1836.

    Article  CAS  PubMed  Google Scholar 

  10. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–669.

    Article  CAS  PubMed  Google Scholar 

  11. Chong WP, Ip WK, Wong WH, Lau CS, Chan TM, Lau YL . Association of interleukin-10 promoter polymorphisms with systemic lupus erythematosus. Genes Immun 2004; 5: 484–492.

    Article  CAS  PubMed  Google Scholar 

  12. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR . Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein- Barr virus gene BCRFI. Science 1990; 248: 1230–1234.

    Article  CAS  PubMed  Google Scholar 

  13. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W . Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274.

    Article  CAS  PubMed  Google Scholar 

  14. Berg DJ, Leach MW, Kuhn R, Rajewsky K, Muller W, Davidson NJ et al. Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. J Exp Med 1995; 182: 99–108.

    Article  CAS  PubMed  Google Scholar 

  15. Berg DJ, Kuhn R, Rajewsky K, Muller W, Menon S, Davidson N et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest 1995; 96: 2339–2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK . IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 1998; 161: 3299–3306.

    CAS  PubMed  Google Scholar 

  17. Fuss IJ, Boirivant M, Lacy B, Strober W . The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 2002; 168: 900–908.

    Article  CAS  PubMed  Google Scholar 

  18. Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR et al. Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 1990; 172: 1625–1631.

    Article  CAS  PubMed  Google Scholar 

  19. Groux H, Cottrez F . The complex role of interleukin-10 in autoimmunity. J Autoimmun 2003; 20: 281–285.

    Article  CAS  PubMed  Google Scholar 

  20. Johanneson B, Lima G, von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME . A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 2002; 71: 1060–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsao BP, Cantor RM, Kalunian KC, Chen CJ, Badsha H, Singh R et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997; 99: 725–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

  23. Llorente L, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Maillot MC, Durand-Gasselin I et al. Spontaneous production of interleukin-10 by B lymphocytes and monocytes in systemic lupus erythematosus. Eur Cytokine Netw 1993; 4: 421–427.

    CAS  PubMed  Google Scholar 

  24. Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I . Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 2000; 18: 565–570.

    CAS  PubMed  Google Scholar 

  25. Llorente L, Richaud-Patin Y, Couderc J, Alarcon-Segovia D, Ruiz-Soto R, Alcocer-Castillejos N et al. Dysregulation of interleukin-10 production in relatives of patients with systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1429–1435.

    Article  CAS  PubMed  Google Scholar 

  26. Enghard P, Langnickel D, Riemekasten G . T cell cytokine imbalance towards production of IFN-gamma and IL-10 in NZB/W F1 lupus-prone mice is associated with autoantibody levels and nephritis. Scand J Rheumatol 2006; 35: 209–216.

    Article  CAS  PubMed  Google Scholar 

  27. Ishida H, Muchamuel T, Sakaguchi S, Andrade S, Menon S, Howard M . Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 1994; 179: 305–310.

    Article  CAS  PubMed  Google Scholar 

  28. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997; 349: 170–173.

    Article  CAS  PubMed  Google Scholar 

  29. Bienvenu J, Doche C, Gutowski MC, Lenoble M, Lepape A, Perdrix JP . Production of proinflammatory cytokines and cytokines involved in the TH1/TH2 balance is modulated by pentoxifylline. J Cardiovasc Pharmacol 1995; 25 (Suppl 2): S80–S84.

    Article  CAS  PubMed  Google Scholar 

  30. Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott MF et al. Cytokine gene polymorphism in human disease: on-line databases. Genes Immun 1999; 1: 3–19.

    Article  CAS  PubMed  Google Scholar 

  31. Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P . Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  32. Edwards-Smith CJ, Jonsson JR, Purdie DM, Bansal A, Shorthouse C, Powell EE . Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 1999; 30: 526–530.

    Article  CAS  PubMed  Google Scholar 

  33. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV . An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997; 24: 1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Lazarus M, Hajeer AH, Turner D, Sinnott P, Worthington J, Ollier WE et al. Genetic variation in the interleukin 10 gene promoter and systemic lupus erythematosus. J Rheumatol 1997; 24: 2314–2317.

    CAS  PubMed  Google Scholar 

  35. Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M et al. Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995; 7: 1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu LJ, Liu ZH, Zeng CH, Chen ZH, Yu C, Li LS . Association of interleukin-10 gene −592 A/C polymorphism with the clinical and pathological diversity of lupus nephritis. Clin Exp Rheumatol 2005; 23: 854–860.

    CAS  PubMed  Google Scholar 

  37. Wyllie AH, Kerr JF, Currie AR . Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  CAS  PubMed  Google Scholar 

  38. Savill J, Fadok V, Henson P, Haslett C . Phagocyte recognition of cells undergoing apoptosis. Immunol Today 1993; 14: 131–136.

    Article  CAS  PubMed  Google Scholar 

  39. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188: 1359–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grigg JM, Savill JS, Sarraf C, Haslett C, Silverman M . Neutrophil apoptosis and clearance from neonatal lungs. Lancet 1991; 338: 720–722.

    Article  CAS  PubMed  Google Scholar 

  41. Haslett C, Savill JS, Whyte MK, Stern M, Dransfield I, Meagher LC . Granulocyte apoptosis and the control of inflammation. Philos Trans R Soc Lond B Biol Sci 1994; 345: 327–333.

    Article  CAS  PubMed  Google Scholar 

  42. Cox G, Crossley J, Xing Z . Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 1995; 12: 232–237.

    Article  CAS  PubMed  Google Scholar 

  43. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM . Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101: 890–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voll RE, Roth EA, Girkontaite I, Fehr H, Herrmann M, Lorenz HM et al. Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. Arthritis Rheum 1997; 40: 2162–2171.

    Article  CAS  PubMed  Google Scholar 

  45. Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C . IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 2006; 107: 4930–4937.

    Article  CAS  PubMed  Google Scholar 

  46. Kim S, Elkon KB, Ma X . Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 2004; 21: 643–653.

    Article  CAS  PubMed  Google Scholar 

  47. Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR . Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1241–1250.

    Article  CAS  PubMed  Google Scholar 

  48. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46: 191–201.

    Article  PubMed  Google Scholar 

  49. Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M . High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 1998; 7: 113–118.

    Article  CAS  PubMed  Google Scholar 

  50. Raptis L, Menard HA . Quantitation and characterization of plasma DNA in normals and patients with systemic lupus erythematosus. J Clin Invest 1980; 66: 1391–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McCoubrey-Hoyer A, Okarma TB, Holman HR . Partial purification and characterization of plasma DNA and its relation to disease activity in systemic lupus erythematosus. Am J Med 1984; 77: 23–34.

    Article  CAS  PubMed  Google Scholar 

  52. Steinman CR . Circulating DNA in systemic lupus erythematosus. Isolation and characterization. J Clin Invest 1984; 73: 832–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Murcia G, Menissier-de Murcia J, Schreiber V . Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays 1991; 13: 455–462.

    Article  CAS  PubMed  Google Scholar 

  54. Petrilli V, Herceg Z, Hassa PO, Patel NS, Di Paola R, Cortes U et al. Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J Clin Invest 2004; 114: 1072–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yung TM, Satoh MS . Functional competition between poly(ADP-ribose) polymerase and its 24-kDa apoptotic fragment in DNA repair and transcription. J Biol Chem 2001; 276: 11279–11286.

    Article  CAS  PubMed  Google Scholar 

  56. D'Amours D, Sallmann FR, Dixit VM, Poirier GG . Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 2001; 114: 3771–3778.

    CAS  PubMed  Google Scholar 

  57. Virag L, Szabo C . The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002; 54: 375–429.

    Article  CAS  PubMed  Google Scholar 

  58. Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO . The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 2001; 276: 45588–45597.

    Article  CAS  PubMed  Google Scholar 

  59. Rolli V, O'Farrell M, Menissier-de Murcia J, de Murcia G . Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 1997; 36: 12147–12154.

    Article  CAS  PubMed  Google Scholar 

  60. Szabo C, Dawson VL . Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 1998; 19: 287–298.

    Article  CAS  PubMed  Google Scholar 

  61. Tulin A, Stewart D, Spradling AC . The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 2002; 16: 2108–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P et al. PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 2005; 18: 83–96.

    Article  CAS  PubMed  Google Scholar 

  63. Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL . NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 2004; 119: 803–814.

    Article  CAS  PubMed  Google Scholar 

  64. Ju BG, Solum D, Song EJ, Lee KJ, Rose DW, Glass CK et al. Activating the PARP-1 sensor component of the groucho/TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 2004; 119: 815–829.

    Article  CAS  PubMed  Google Scholar 

  65. Jijon HB, Churchill T, Malfair D, Wessler A, Jewell LD, Parsons HG et al. Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am J Physiol Gastrointest Liver Physiol 2000; 279: G641–G651.

    Article  CAS  PubMed  Google Scholar 

  66. Virag L, Bai P, Bak I, Pacher P, Mabley JG, Liaudet L et al. Effects of poly(ADP-ribose) polymerase inhibition on inflammatory cell migration in a murine model of asthma. Med Sci Monit 2004; 10: BR77–BR83.

    CAS  PubMed  Google Scholar 

  67. Chiarugi A . Inhibitors of poly(ADP-ribose) polymerase-1 suppress transcriptional activation in lymphocytes and ameliorate autoimmune encephalomyelitis in rats. Br J Pharmacol 2002; 137: 761–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akiyama T, Takasawa S, Nata K, Kobayashi S, Abe M, Shervani NJ et al. Activation of Reg gene, a gene for insulin-producing beta -cell regeneration: poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. Proc Natl Acad Sci USA 2001; 98: 48–53.

    CAS  PubMed  Google Scholar 

  69. Oliver FJ, Menissier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999; 18: 4446–4454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuhnle S, Nicotera P, Wendel A, Leist M . Prevention of endotoxin-induced lethality, but not of liver apoptosis in poly(ADP-ribose) polymerase-deficient mice. Biochem Biophys Res Commun 1999; 263: 433–438.

    Article  CAS  PubMed  Google Scholar 

  71. Tsao BP . Lupus susceptibility genes on human chromosome 1. Int Rev Immunol 2000; 19: 319–334.

    Article  CAS  PubMed  Google Scholar 

  72. Bohm I . The apoptosis marker enzyme poly-(ADP-ribose) polymerase (PARP) in systemic lupus erythematosus. Z Rheumatol 2006; 65: 541–544.

    Article  CAS  PubMed  Google Scholar 

  73. Jeoung D, Lim Y, Lee EB, Lee S, Kim HY, Lee H et al. Identification of autoantibody against poly (ADP-ribose) polymerase (PARP) fragment as a serological marker in systemic lupus erythematosus. J Autoimmun 2004; 22: 87–94.

    Article  CAS  PubMed  Google Scholar 

  74. Lim Y, Lee DY, Lee S, Park SY, Kim J, Cho B et al. Identification of autoantibodies associated with systemic lupus erythematosus. Biochem Biophys Res Commun 2002; 295: 119–124.

    Article  CAS  PubMed  Google Scholar 

  75. Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma. J Immunol 2005; 174: 3015–3023.

    Article  CAS  PubMed  Google Scholar 

  76. Benkhart EM, Siedlar M, Wedel A, Werner T, Ziegler-Heitbrock HW . Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol 2000; 165: 1612–1617.

    Article  CAS  PubMed  Google Scholar 

  77. Cao S, Liu J, Chesi M, Bergsagel PL, Ho IC, Donnelly RP et al. Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma. J Immunol 2002; 169: 5715–5725.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH (AI45899) to XM and a grant from the Mary Kirkland Foundation for Lupus Research to XM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, E., Liu, J., Zhang, Y. et al. Differential expression in lupus-associated IL-10 promoter single-nucleotide polymorphisms is mediated by poly(ADP-ribose) polymerase-1. Genes Immun 8, 577–589 (2007). https://doi.org/10.1038/sj.gene.6364420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364420

Keywords

This article is cited by

Search

Quick links