Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Linkage disequilibrium analysis of chromosome 12q14–15 in multiple sclerosis: delineation of a 118-kb interval around interferon-γ (IFNG) that is involved in male versus female differential susceptibility

Abstract

We have recently reported the association of a polymorphic intronic CA-repeat in the interferon-gamma gene (IFNG) with gender bias in susceptibility to multiple sclerosis (MS) in a Sardinian population. This association could refer to a functional polymorphism within IFNG or could be due to linkage disequilibrium between the IFNG marker and a neighbouring susceptibility locus. Within the average reach of linkage disequilibrium, various other candidate genes are located. Among these the most striking ones are the genes coding for the cytokines interleukin-22 (IL-22) and interleukin-26 (IL-26) that constitute together with IFNG a cytokine cluster on chromosome 12q14. To determine more precisely the location of this gender-associated susceptibility locus, we have now performed a more extensive linkage disequilibrium screen of this region using nine additional microsatellite markers. This locus appeared to be confined to a 118-kb interval that is bordered by the markers D12S313 and D12S2511, in which IFNG itself remains the main candidate gene. Haplotype analysis confirmed that this MS-associated locus protects males from developing MS according to a recessive or allele-dosage model. Our results indicate that the well-documented gender differences in susceptibility to MS are at least partially caused by genetic factors in the region surrounding IFNG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Svejgaard A . HLA controlled susceptibility to multiple sclerosis—a survey In Hommes OR, Clanet M, Wekerle H (ed) Genes and Viruses in Multiple Sclerosis Elsevier: Amsterdam 2001 pp 25–35

    Google Scholar 

  2. Chataway J, Feakes R, Coraddu F et al. The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen Brain 1998 121: 1869–1887

    Article  PubMed  Google Scholar 

  3. Duquette P, Pleines J, Girard M, Charest L, Senecal-Quevillon M, Masse C . The increased susceptibility of women to multiple sclerosis Can J Neurol Sci 1992 19: 466–471

    CAS  PubMed  Google Scholar 

  4. Billiau A . Interferon-γ in autoimmunity Cytokine Growth Factor Rev 1996 7: 25–34

    Article  CAS  PubMed  Google Scholar 

  5. Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J . Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 1988 78: 318–323

    Article  CAS  PubMed  Google Scholar 

  6. Lu CZ, Jensen MA, Arnason BG . Interferon gamma- and interleukin-4-secreting cells in multiple sclerosis J Neuroimmunol 1993 46: 123–128

    Article  CAS  PubMed  Google Scholar 

  7. Dettke M, Scheidt P, Prange H, Kirchner H . Correlation between interferon production and clinical disease activity in patients with multiple sclerosis J Clin Immunol 1997 17: 293–300

    Article  CAS  PubMed  Google Scholar 

  8. Panitch HS, Hirsch RL, Haley AS, Johnson KP . Exacerbations of multiple sclerosis in patients treated with gamma interferon Lancet 1987 1: 893–895

    Article  CAS  PubMed  Google Scholar 

  9. The Multiple Sclerosis Genetics Group. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex Nat Genet 1996 13: 469–471

    Article  CAS  PubMed  Google Scholar 

  10. Bureau JF, Montagutelli X, Bihl F, Lefebvre S, Guénet J-L, Brahic M . Mapping loci influencing the persistence of Theiler's virus in the murine central nervous system Nat Genet 1993 5: 87–91

    Article  CAS  PubMed  Google Scholar 

  11. Vandenbroeck K, Opdenakker G, Goris A, Murru R, Billiau A, Marrosu MG . Interferon–γ gene polymorphism-associated risk for multiple sclerosis in Sardinia Ann Neurol 1998 44: 841–842

    Article  CAS  PubMed  Google Scholar 

  12. Goris A, Epplen C, Fiten P et al. Analysis of an IFN-γ gene (IFNG) polymorphism in multiple sclerosis in Europe: effect of population structure on association with disease J Interferon Cytokine Res 1999 19: 1037–1046

    Article  CAS  PubMed  Google Scholar 

  13. Weinshenker BG, Kantarci OH, Goris A et al. Polymorphisms of interferon gamma (IFNG) contribute to gender-based differential susceptibility to MS Am J Hum Genet 2001 69: (Suppl 1) 576 (Abstr. 2320)

    Google Scholar 

  14. Marrosu MG, Murru MR, Costa G et al. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles Am J Hum Genet 1997 61: 454–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dai Y, Masterman T, Huang WX et al. Analysis of an interferon-γ gene dinucleotide-repeat polymorphism in Nordic multiple sclerosis patients Multiple Sclerosis 2001 7: 157–163

    Article  CAS  PubMed  Google Scholar 

  16. Jorde LB, Watkins WS, Kere J, Nyman D, Eriksson AW . Gene mapping in isolated populations: new roles for old friends? Hum Hered 2000 50: 57–65

    Article  CAS  PubMed  Google Scholar 

  17. Eaves IA, Merriman TR, Barber RA et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes Nat Genet 2000 25: 320–323

    Article  CAS  PubMed  Google Scholar 

  18. Fickenscher H, Hör S, Küpers H, Knappe A, Wittman S, Sticht H . The interleukin-10 family of cytokines Trends Immunol 2002 23: 89–96

    Article  CAS  PubMed  Google Scholar 

  19. Knappe A, Hör S, Wittmann S, Fickenscher H . Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri J Virol 2000 74: 3881–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dumoutier L, Van, Roost E, Colau D, Renauld JC . Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor Proc Natl Acad Sci USA 2000 97: 10144–10149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie MH, Aggarwal S, Ho W-H et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R J Biol Chem 2000 275: 31335–31339

    Article  CAS  PubMed  Google Scholar 

  22. Snyder LC, Trusko SP, Freeman N, Eshleman JR, Fakharzadeh SS, George DL . A gene amplified in a transformed mouse cell line undergoes complex transcriptional processing and encodes a nuclear protein J Biol Chem 1988 263: 17150–17158

    CAS  PubMed  Google Scholar 

  23. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) Am J Hum Genet 1993 52: 506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Herr M, Dudbridge F, Zavattari P et al. Evaluation of fine mapping strategies for a multifactorial disease locus: systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21 Hum Mol Genet 2000 9: 1291–1301

    Article  CAS  PubMed  Google Scholar 

  25. Goris A, Marrosu M, Vandenbroeck K . Novel polymorphisms in the IL-10 related AK155 gene (chromosome 12q15) Genes Immun 2001 2: 284–286

    Article  CAS  PubMed  Google Scholar 

  26. Giedraitis VE, He B, Hillert J . Mutation screening of the interferon-gamma gene as a candidate for multiple sclerosis Eur J Immunogenet 1999 26: 257–259

    Article  CAS  PubMed  Google Scholar 

  27. Iwasaki H, Ota N, Nakajima T et al. Five novel single-nucleotide polymorphisms of human interferon gamma identified by sequencing the entire gene J Hum Genet 2001 46: 32–34

    Article  CAS  PubMed  Google Scholar 

  28. Pravica V, Perrey C, Stevens A, Lee J-H, Hutchinson IV . A single nucleotide polymorphism in the first intron of the human IFN-γ gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-γ production Hum Immunol 2000 61: 863–866

    Article  CAS  PubMed  Google Scholar 

  29. Wu S, Muhleman D, Comings DE . G5644A polymorphism in the interferon-gamma (IFNG) gene Psychiatr Genet 1998 8: 57

    Article  CAS  PubMed  Google Scholar 

  30. Bream JH, Carrington M, O'Toole S et al. Polymorphisms of the human IFNG gene noncoding regions Immunogenetics 2000 51: 50–58

    Article  CAS  PubMed  Google Scholar 

  31. Huygen K, Palfliet K . Strain variation in interferon γ production of BCG-sensitized mice challenged with PPD. 2. Importance of one major autosomal locus and additional sexual influences Cell Immunol 1984 85: 75–81

    Article  CAS  PubMed  Google Scholar 

  32. McFarland HI, Bigley NJ . Sex-dependent, early cytokine production by NK-like spleen cells following infection with the D variant of encephalomyocarditis virus (EMCV-D) Viral Immunol 1989 2: 205–214

    Article  CAS  PubMed  Google Scholar 

  33. Ishikawa R, Bigley N . Sex hormone modulation of interferon (IFN) alpha/beta and gamma production by mouse spleen cell subsets following picornavirus infection Viral Immunol 1990 3: 225–236

    Article  CAS  PubMed  Google Scholar 

  34. Fox HS, Bond BL, Parslow TG . Estrogen regulates the IFN–γ promotor J Immunol 1991 146: 4362–4367

    CAS  PubMed  Google Scholar 

  35. Verthelyi D, Klinman DM . Sex hormone levels correlate with the activity of cytokine-secreting cells in vivo Immunology 2000 100: 384–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bihl F, Brahic M, Bureau JF . Two loci, Tmevp2 and Tmevp3, located on the telomeric region of chromosome 10, control the persistence of Theiler's virus in the central nervous system of mice Genetics 1999 152: 385–392

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vigneau S, Levillayer F, Crespeau H et al. Homology between a 173-kb region from mouse chromosome 10, telomeric to the Ifng locus, and human chromosome 12q15 Genomics 2001 78: 206–213

    Article  CAS  PubMed  Google Scholar 

  38. John S, Myerscough A, Marlow A et al. Linkage of cytokine genes to rheumatoid arthritis. Evidence of genetic heterogeneity Ann Rheum Dis 1998 57: 361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ollier WER . Role of interferon–γ gene in rheumatoid arthritits? Lancet 2000 356: 784

    Article  Google Scholar 

  40. Lio D, Scola L, Crivello A et al. Allele frequencies of +874T–a single nucleotide polymorphism at the first intron of interferon-γ gene in a group of Italian centenarians Exp Gerontol 2002 37: 315–319

    Article  CAS  PubMed  Google Scholar 

  41. Poser CM, Paty DW, Scheinberg L et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols Ann Neurol 1993 13: 227–231

    Article  Google Scholar 

  42. Knapp M . A note on power approximations for the trans-mission/disequilibrium test Am J Hum Genet 1999 64: 1177–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Falk CT, Rubinstein P . Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations Ann Hum Genet 1987 51: 227–233

    Article  CAS  PubMed  Google Scholar 

  44. Sasieni PD . From genotypes to genes: doubling the sample size Biometrics 1997 53: 1253–1261

    Article  CAS  PubMed  Google Scholar 

  45. Agresti A . On logit confidence intervals for the odds ratio with small samples Biometrics 1999 55: 597–602

    Article  CAS  PubMed  Google Scholar 

  46. Schneider S, Roessli D, Excoffier L . Arlequin: a Software for Population Genetics Data Analysis Version 2.000 Genetics and Biometry Laboratory, University of Geneva: Geneva 2000 http://anthropologie.unige.ch/arlequin

    Google Scholar 

  47. Hedrick PW . Gametic disequilibrium measures: proceed with caution Genetics 1987 117: 331–341

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the patients and their families for their cooperation. Research at QUB on the role of chromosome 12q14–15 and IFNG in gender bias in MS is supported by RRG grant 11.5 from the Northern Ireland Health and Personal Social Services (HPSS) R&D Office. AG is a research assistant of the Fund for Scientific Research Flanders (FWO-Vlaanderen) and was supported by a Du Pré Exchange Grant of the International Federation of Multiple Sclerosis Societies. We wish to thank G. Opdenakker for support and critical reading of the manuscript. KV is Allen J. McClay Lecturer at QUB, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Vandenbroeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goris, A., Heggarty, S., Marrosu, M. et al. Linkage disequilibrium analysis of chromosome 12q14–15 in multiple sclerosis: delineation of a 118-kb interval around interferon-γ (IFNG) that is involved in male versus female differential susceptibility. Genes Immun 3, 470–476 (2002). https://doi.org/10.1038/sj.gene.6363913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363913

Keywords

This article is cited by

Search

Quick links