Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia

Abstract

Similar to human chronic lymphocytic leukemia (CLL), the de novo New Zealand Black (NZB) mouse model has a genetically determined age-associated increase in malignant B-1 clones and decreased expression of microRNAs miR-15a and miR-16 in B-1 cells. In the present study, lentiviral vectors were employed in vivo to restore miR-15a/16, and both the short-term single injection and long-term multiple injection effects of this delivery were observed in NZB. Control lentivirus without the mir-15a/16 sequence was used for comparison. We found that in vivo lentiviral delivery of mir-15a/16 increased miR-15a/16 expression in cells that were transduced (detected by GFP expression) and in sera when compared with control lentivirus treatment. More importantly, mice treated with the miR-expressing lentivirus had decreased disease. The lentivirus had little systemic toxicity while preferentially targeting B-1 cells. Short-term effects on B-1 cells were direct effects, and only malignant B-1 cells transduced with miR-15a/16 lentivirus had decreased viability. In contrast, long-term studies suggested both direct and indirect effects resulting from miR-15a/16 lentivirus treatment. A decrease in B-1 cells was found in both the transduced and non-transduced populations. Our data support the potential use of systemic lentiviral delivery of miR-15a/16 to ameliorate disease manifestations of CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiorazzi N, Rai K, Ferrarini M . Mechanisms of disease: chronic lymphocytic leukemia. New Eng J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger R et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  3. Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y et al. Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res 2001; 61: 6640–6648.

    CAS  Google Scholar 

  4. Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grandér D et al. Cloning of two candidate tumor suppressor genes within a 10kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene 1997; 15: 2463–2473.

    Article  CAS  Google Scholar 

  5. Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 2009; 315: 2941–2952.

    Article  CAS  Google Scholar 

  6. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    CAS  Google Scholar 

  7. Kim VN . MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6: 376–385.

    Article  CAS  Google Scholar 

  8. Newman MA, Hammond SM . Emerging paradigms of regulated microRNA processing. Genes Dev 2010; 24: 1086–1092.

    Article  CAS  Google Scholar 

  9. Calin GA, Garzon R, Cimmino A, Fabbri M, Croce CM . MicroRNAs and leukemias: how strong is the connection? Leuk Res 2006; 30: 653–655.

    Article  CAS  Google Scholar 

  10. Navarro F, Lieberman J . Small RNAs guide hematopoietic cell differentiation and function. J Immunol 2010; 184: 5939–5947.

    Article  CAS  Google Scholar 

  11. Sevignani C, Calin GA, Siracusa LD, Croce CM . Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 2006; 17: 189–202.

    Article  CAS  Google Scholar 

  12. Zhao H, Wang D, Du W, Gu D, Yang R . MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 2010; 74: 149–155.

    Article  Google Scholar 

  13. Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA . MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 2008; 22: 1095–1105.

    Article  CAS  Google Scholar 

  14. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  Google Scholar 

  15. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  16. Nicoloso MS, Kipps TJ, Croce CM, Calin GA . MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. Br J Haematol 2007; 139: 709–716.

    Article  CAS  Google Scholar 

  17. Theofilopoulos AN . Genetics of systemic autoimmunity. J Autoimmunity 1996; 9: 207–210.

    Article  CAS  Google Scholar 

  18. Phillips JA, Mehta K, Fernandez C, Raveche ES . The NZB mouse as a model for chronic lymphocytic leukemia. Cancer Res 1992; 52: 437–443.

    CAS  PubMed  Google Scholar 

  19. Scaglione BJ, Salerno E, Balan M, Coffman F, Landgraf P, Abbasi F et al. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br J Haematol 2007; 139: 645–657.

    Article  CAS  Google Scholar 

  20. Foster MH . Relevance of systemic lupus erythematosus nephritis animal models to human disease. Semin Nephrol 1999; 19: 12–24.

    CAS  PubMed  Google Scholar 

  21. Dang AM, Phillips JA, Lin T, Raveche ES . Altered CD45 expression in malignant B-1 cells. Cell Immunol 1996; 169: 196–207.

    Article  CAS  Google Scholar 

  22. Raveche E, Fernandes H, Ong H, Peng B . Regulatory role of T cells in a murine model of lymphoproliferative disease. Cell Immunol 1998; 187: 67–75.

    Article  CAS  Google Scholar 

  23. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    Article  CAS  Google Scholar 

  24. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  25. Salerno E, Scaglione BJ, Coffman FD, Brown BD, Baccarini A, Fernandes H et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther 2009; 8: 2684–2692.

    Article  CAS  Google Scholar 

  26. Young AJ, Hay JB . Rapid turnover of the recirculating lymphocyte pool in vivo. Int Immunol 1995; 7: 1607–1615.

    Article  CAS  Google Scholar 

  27. Caligaris-Cappio F, Ghia P . The normal counterpart to the chronic lymphocytic leukemia B cell. Best Pract Res Clin Haematol 2007; 20: 385–397.

    Article  CAS  Google Scholar 

  28. Lanasa MC, Allgood SD, Volkheimer AD, Gockerman JP, Whitesides JF, Goodman BK et al. Single-cell analysis reveals oligoclonality among ‘low-count’ monoclonal B-cell lymphocytosis. Leukemia 2010; 24: 133–140.

    Article  CAS  Google Scholar 

  29. Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, Hewamana S et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 2010; 116: 1899–1907.

    Article  CAS  Google Scholar 

  30. Salerno E, Yuan Y, Scaglione BJ, Marti G, Jankovic A, Mazzella F et al. The New Zealand Black mouse as a model for the development and progression of chronic lymphocytic leukemia. Cytometry B Clin Cytom 2010; 78 (Suppl 1): S98–S109.

    Article  Google Scholar 

  31. Giannini EG, Testa R, Savarino V . Liver enzyme alteration: a guide for clinicians. CMAJ 2005; 172: 367–379.

    Article  Google Scholar 

  32. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    Article  CAS  Google Scholar 

  33. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.

    Article  CAS  Google Scholar 

  34. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580–1587.

    Article  CAS  Google Scholar 

  35. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  Google Scholar 

  36. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271–1277.

    Article  CAS  Google Scholar 

  37. Takeshita F, Patrawala L, Osaki M, Takahashi R-U, Yamamoto Y, Kosaka N et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010; 18: 181–187.

    Article  CAS  Google Scholar 

  38. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70: 5923–5930.

    Article  CAS  Google Scholar 

  39. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  40. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100: 813–822.

    Article  CAS  Google Scholar 

  41. Vargas Jr J, Gusella GL, Najfeld V, Klotman ME, Cara A . Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther 2004; 15: 361–372.

    Article  CAS  Google Scholar 

  42. Fabbri M . miRNAs as molecular biomarkers of cancer. Expert Rev Mol Diagn 2010; 10: 435–444.

    Article  CAS  Google Scholar 

  43. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  Google Scholar 

  44. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 2010; 107: 6328–6333.

    Article  CAS  Google Scholar 

  45. Simpson RJ, Jensen SS, Lim JW . Proteomic profiling of exosomes: current perspectives. Proteomics 2008; 8: 4083–4099.

    Article  CAS  Google Scholar 

  46. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    Article  CAS  Google Scholar 

  47. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2: 282.

    Article  Google Scholar 

  48. Thery C, Ostrowski M, Segura E . Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 581–593.

    Article  CAS  Google Scholar 

  49. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE . Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 2010; 115: 1755–1764.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the UMDNJ-NJMS Flow Cytometry Core. This research was funded in part by NIH R01CA129826 (ER) and the NJ Commission on Cancer Research predoctoral fellowship 09-1255-CCR-E0 (ES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Raveche.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasar, S., Salerno, E., Yuan, Y. et al. Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes Immun 13, 109–119 (2012). https://doi.org/10.1038/gene.2011.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.58

Keywords

This article is cited by

Search

Quick links