Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis

Abstract

Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes regulating neuroinflammation we used a rat model of MS, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), and carried out a linkage analysis in an advanced intercross line (AIL). We thereby redefine the Eae18b locus to a 0.88 Mb region, including a cluster of chemokine genes. Further, we show differential expression of Ccl2, Ccl11 and Ccl11 during EAE in rat strains with opposite susceptibility to EAE, regulated by genotype in Eae18b. The human homologous genes were tested for association to MS in 3841 cases and 4046 controls from four Nordic countries. A haplotype in CCL2 and rs3136682 in CCL1 show a protective association to MS, whereas a haplotype in CCL13 is disease predisposing. In the HLA-DRB1*15 positive subgroup, we also identified an association to a risk haplotype in CCL2, suggesting an influence from the human leukocyte antigen (HLA) locus. We further identified association to rheumatoid arthritis in CCL2, CCL8 and CCL13, indicating common regulatory mechanisms for complex diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jersild C, Hansen G, Svejgaard A, Fog T, Thomsen M, Dupont B . Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. The Lancet 1973; 302: 1221–1225.

    Article  Google Scholar 

  2. Hillert J, Olerup O . Multiple sclerosis is associated with genes within or close to the HLA-DR-DQ subregion on a normal DR15,DQ6,Dw2 haplotype. Neurology 1993; 43: 163–168.

    Article  CAS  Google Scholar 

  3. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  Google Scholar 

  4. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 2007; 39: 1108–1113.

    Article  CAS  Google Scholar 

  5. International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  Google Scholar 

  6. Anaya JM, Gomez L, Castiblanco J . Is there a common genetic basis for autoimmune diseases? Clin Dev Immunoly 2006; 13: 185–195.

    Article  CAS  Google Scholar 

  7. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528–537.

    Article  CAS  Google Scholar 

  8. Sigurdsson S, Padyukov L, Kurreeman FA, Liljedahl U, Wiman AC, Alfredsson L et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum 2007; 56: 2202–2210.

    Article  CAS  Google Scholar 

  9. Dideberg V, Kristjansdottir G, Milani L, Libioulle C, Sigurdsson S, Louis E et al. An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 2007; 16: 3008–3016.

    Article  CAS  Google Scholar 

  10. Kristjansdottir G, Sandling JK, Bonetti A, Roos IM, Milani L, Wang C et al. Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. J Med Genet 2008; 45: 362–369.

    Article  CAS  Google Scholar 

  11. International Multiple Sclerosis Genetics Consortium. The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun 2009; 10: 11–14.

    Article  Google Scholar 

  12. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857–864.

    Article  CAS  Google Scholar 

  13. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 2007; 448: 591–594.

    Article  CAS  Google Scholar 

  14. Zoledziewska M, Costa G, Pitzalis M, Cocco E, Melis C, Moi L et al. Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun 2009; 10: 15–17.

    Article  CAS  Google Scholar 

  15. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  Google Scholar 

  16. Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, Saitoh Y et al. Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet 2002; 31: 391–394.

    Article  CAS  Google Scholar 

  17. Dahlman I, Wallstrom E, Weissert R, Storch M, Kornek B, Jacobsson L et al. Linkage analysis of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the rat identifies a locus controlling demyelination on chromosome 18. Hum Mol Genet 1999; 8: 2183–2190.

    Article  CAS  Google Scholar 

  18. Jagodic M, Kornek B, Weissert R, Lassmann H, Olsson T, Dahlman I . Congenic mapping confirms a locus on rat chromosome 10 conferring strong protection against myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Immunogenetics 2001; 53: 410–415.

    Article  CAS  Google Scholar 

  19. Jagodic M, Becanovic K, Sheng JR, Wu X, Bäckdahl L, Lorentzen JC et al. An advanced intercross line resolves Eae18 into two narrow quantitative trait loci syntenic to multiple sclerosis candidate loci. J Immunol 2004; 173: 1366–1373.

    Article  CAS  Google Scholar 

  20. Furuya T, Salstrom JL, McCall-Vining S, Cannon GW, Joe B, Remmers EF et al. Genetic dissection of a rat model for rheumatoid arthritis: significant gender influences on autosomal modifier loci. Hum Mol Genet 2000; 9: 2241–2250.

    Article  CAS  Google Scholar 

  21. Joe B, Cannon GW, Griffiths MM, Dobbins DE, Gulko PS, Wilder RL et al. Evaluation of quantitative trait loci regulating severity of mycobacterial adjuvant-induced arthritis in monocongenic and polycongenic rats: identification of a new regulatory locus on rat chromosome 10 and evidence of overlap with rheumatoid arthritis susceptibility loci. Arthritis Rheum 2002; 46: 1075–1085.

    Article  CAS  Google Scholar 

  22. Joe B, Remmers EF, Dobbins DE, Salstrom JL, Furuya T, Dracheva S et al. Genetic dissection of collagen-induced arthritis in chromosome 10 quantitative trait locus speed congenic rats: evidence for more than one regulatory locus and sex influences. Immunogenetics 2000; 51: 930–944.

    Article  CAS  Google Scholar 

  23. The Transatlantic Multiple Sclerosis Genetics Cooperative. A meta-analysis of genomic screens in multiple sclerosis. Mult Scler 2001; 7: 3–11.

    Article  Google Scholar 

  24. Griffiths-Johnson DA, Collins PD, Rossi AG, Jose PJ, Williams TJ . The chemokine, eotaxin, activates guinea-pig eosinophils in vitro and causes their accumulation into the lung in vivo. Biochem Biophys Res Commun 1993; 197: 1167–1172.

    Article  CAS  Google Scholar 

  25. Glabinski AR, Tani M, Tuohy VK, Tuthill RJ, Ransohoff RM . Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain, Behav Immun 1995; 9: 315–330.

    Article  CAS  Google Scholar 

  26. McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF . MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 1998; 86: 20–29.

    Article  CAS  Google Scholar 

  27. dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J . CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis—an intravital microscopy study. J Neuroimmunol 2005; 162: 122–129.

    Article  CAS  Google Scholar 

  28. Banisor I, Leist T, Kalman B . Involvement of beta-chemokines in the development of inflammatory demyelination. J Neuroinflammation 2005; 2: 7.

    Article  Google Scholar 

  29. Vyshkina T, Kalman B . Haplotypes within genes of Î2-chemokines in 17q11 are associated with multiple sclerosis: a second phase study. Hum Genet 2005; V118: 67.

    Article  Google Scholar 

  30. Vyshkina T, Shugart YY, Birnbaum G, Leist TP, Kalman B . Association of haplotypes in the [beta]-chemokine locus with multiple sclerosis. Eur J Hum Genet 2004; 13: 240.

    Article  Google Scholar 

  31. Bugeja MJ, Booth D, Bennetts B, Heard R, Rubio J, Stewart G . An investigation of polymorphisms in the 17q11.2-12 CC chemokine gene cluster for association with multiple sclerosis in Australians. BMC Med Genet 2006; 7: 64.

    Article  Google Scholar 

  32. Vyshkina T, Sylvester A, Sadiq S, Bonilla E, Perl A, Kalman B . CCL genes in multiple sclerosis and systemic lupus erythematosus. J Neuroimmunol 2008; 200: 145–152.

    Article  CAS  Google Scholar 

  33. Darvasi A . Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 1998; 18: 19.

    Article  CAS  Google Scholar 

  34. Ockinger J, Serrano-Fernandez P, Moller S, Ibrahim SM, Olsson T, Jagodic M . Definition of a 1.06-Mb region linked to neuroinflammation in humans, rats and mice. Genetics 2006; 173: 1539–1545.

    Article  Google Scholar 

  35. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 1994; 153: 4349–4356.

    CAS  Google Scholar 

  36. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A . Simplified mammalian DNA isolation procedure. Nucleic Acids Res 1991; 19: 4293.

    Article  CAS  Google Scholar 

  37. Jacob HJ, Brown DM, Bunker RK, Daly MJ, Dzau VJ, Goodman A et al. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat Genet 1995; 9: 63.

    Article  CAS  Google Scholar 

  38. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics (Oxford, England) 2003; 19: 889–890.

    Article  CAS  Google Scholar 

  39. Manichaikul A, Dupuis J, Sen S, Broman KW . Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus. Genetics 2006; 174: 481–489.

    Article  Google Scholar 

  40. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  Google Scholar 

  41. Roos IM, Kockum I, Hillert J . The interleukin 23 receptor gene in multiple sclerosis: a case-control study. J Neuroimmunol 2008; 194: 173–180.

    Article  CAS  Google Scholar 

  42. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227–231.

    Article  CAS  Google Scholar 

  43. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  44. Klareskog L, Stolt P, Lundberg K, Kallberg H, Bengtsson C, Grunewald J et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006; 54: 38–46.

    Article  CAS  Google Scholar 

  45. Stolt P, Bengtsson C, Nordmark B, Lindblad S, Lundberg I, Klareskog L et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis 2003; 62: 835–841.

    Article  CAS  Google Scholar 

  46. Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics (Oxford, England) 2007; 23: 644–645.

    Google Scholar 

  47. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2009.

  48. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England) 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  49. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66: 87–98.

    Article  Google Scholar 

  50. Darvasi A, Soller M . Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 1995; 141: 1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kennedy KJ, Strieter RM, Kunkel SL, Lukacs NW, Karpus WJ . Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J Neuroimmunol 1998; 92: 98–108.

    Article  CAS  Google Scholar 

  52. Jee Y, Yoon WK, Okura Y, Tanuma N, Matsumoto Y . Upregulation of monocyte chemotactic protein-1 and CC chemokine receptor 2 in the central nervous system is closely associated with relapse of autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 2002; 128: 49–57.

    Article  CAS  Google Scholar 

  53. Woolf B . On estimating the relation between blood group and disease. Ann Hum Genet 1955; 19: 251–253.

    Article  CAS  Google Scholar 

  54. Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE 2007; 2: e664.

    Article  Google Scholar 

  55. Modin H, Olsson W, Hillert J, Masterman T . Modes of action of HLA-DR susceptibility specificities in multiple sclerosis. Am J Hum Genet 2004; 74: 1321–1322.

    Article  CAS  Google Scholar 

  56. Barcellos LF, Oksenberg JR, Begovich AB, Martin ER, Schmidt S, Vittinghoff E et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72: 710–716.

    Article  CAS  Google Scholar 

  57. Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S et al. Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology 2005; 64: 1144–1151.

    Article  CAS  Google Scholar 

  58. Haringman JJ, Smeets TJ, Reinders-Blankert P, Tak PP . Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis 2006; 65: 294–300.

    Article  CAS  Google Scholar 

  59. Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 1992; 90: 772–779.

    Article  CAS  Google Scholar 

  60. González-Escribano MF, Torres B, Aguilar F, Rodríguez R, García A, Valenzuela Á et al. MCP-1 promoter polymorphism in Spanish patients with rheumatoid arthritis. Hum Immunol 2003; 64: 741–744.

    Article  Google Scholar 

  61. Iwamoto T, Okamoto H, Kobayashi S, Ikari K, Toyama Y, Tomatsu T et al. A role of monocyte chemoattractant protein-4 (MCP-4)/CCL13 from chondrocytes in rheumatoid arthritis. FEBS J 2007; 274: 4904–4912.

    Article  CAS  Google Scholar 

  62. Iwamoto T, Okamoto H, Iikuni N, Takeuchi M, Toyama Y, Tomatsu T et al. Monocyte chemoattractant protein-4 (MCP-4)/CCL13 is highly expressed in cartilage from patients with rheumatoid arthritis. Rheumatology (Oxford, England) 2006; 45: 421–424.

    Article  CAS  Google Scholar 

  63. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 2007; 357: 1199–1209.

    Article  CAS  Google Scholar 

  64. Miyagishi R, Kikuchi S, Takayama C, Inoue Y, Tashiro K . Identification of cell types producing RANTES, MIP-1 alpha and MIP-1 beta in rat experimental autoimmune encephalomyelitis by in situ hybridization. J Neuroimmunol 1997; 77: 17–26.

    Article  CAS  Google Scholar 

  65. Crown SE, Yu Y, Sweeney MD, Leary JA, Handel TM . Heterodimerization of CCR2 chemokines and regulation by glycosaminoglycan binding. J Biol Chem 2006; 281: 25438–25446.

    Article  CAS  Google Scholar 

  66. Alioglu E, Turk U, Cam S, Abbasaliyev A, Tengiz I, Ercan E . Polymorphisms of the methylenetetrahydrofolate reductase, vascular endothelial growth factor, endothelial nitric oxide synthase, monocyte chemoattractant protein-1 and apolipoprotein E genes are not associated with carotid intima-media thickness. Can J Cardiol 2009; 25: e1–e5.

    Article  CAS  Google Scholar 

  67. McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney Jr JF et al. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 2005; 112: 1113–1120.

    Article  CAS  Google Scholar 

  68. Rigoli L, Caminiti L, Di Bella C, Procopio V, Cuppari C, Vita D et al. Investigation of the eotaxin gene −426C → T, −384A → G and 67G → a single-nucleotide polymorphisms and atopic dermatitis in Italian children using family-based association methods. Clin Exp Dermatol 2008; 33: 316–321.

    Article  CAS  Google Scholar 

  69. Hinks A, Barton A, John S, Bruce I, Hawkins C, Griffiths CE et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 2005; 52: 1694–1699.

    Article  CAS  Google Scholar 

  70. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  Google Scholar 

  71. Begovich AB, Caillier SJ, Alexander HC, Penko JM, Hauser SL, Barcellos LF et al. The R620W polymorphism of the protein tyrosine phosphatase PTPN22 is not associated with multiple sclerosis. Am J Hum Genet 2005; 76: 184–187.

    Article  CAS  Google Scholar 

  72. De Jager PL, Sawcer S, Waliszewska A, Farwell L, Wild G, Cohen A et al. Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn's disease and multiple sclerosis. Eur J Hum Genet 2006; 14: 317–321.

    Article  CAS  Google Scholar 

  73. Maier LM, Lowe CE, Cooper J, Downes K, Anderson DE, Severson C et al. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet 2009; 5: e1000322.

    Article  Google Scholar 

  74. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999; 103: 807–815.

    Article  CAS  Google Scholar 

  75. Sindern E, Niederkinkhaus YM, Henschel LM, Ossege T, Patzold J, Malin P . Differential release of beta-chemokines in serum and CSF of patients with relapsing-remitting multiple sclerosis. Acta Neurol Scand 2001; 104: 88–91.

    Article  CAS  Google Scholar 

  76. Tanuma N, Sakuma H, Sasaki A, Matsumoto Y . Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathologica 2006; 112: 195–204.

    Article  CAS  Google Scholar 

  77. Cantor J, Haskins K . Recruitment and activation of macrophages by pathogenic CD4 T cells in type 1 diabetes: evidence for involvement of CCR8 and CCL1. J Immunol 2007; 179: 5760–5767.

    Article  CAS  Google Scholar 

  78. Barinka C, Prahl A, Lubkowski J . Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13). Acta Crystallographica 2008; 64 (Part 3): 273–278.

    CAS  PubMed  Google Scholar 

  79. Pigard N, Elovaara I, Kuusisto H, Paalavuo R, Dastidar P, Zimmermann K et al. Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression. J Neuroimmunol 2009; 209: 114–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Mohsen Khademi and Maria Karlsson for technical assistance and Dr Boel Brynedal for critical review of the paper. We also thank all the patients and volunteers who contributed to this study. All involved hospital staff are thanked for their contribution, in particular the neurologists Tuula Pirttilä (University of Kuopio), Irina Elovaara (University of Tampere) and Mauri Reunanen (University of Oulu) for their efforts in recruiting Finnish MS patients, and Professor Lars Klareskog (Karolinska Institutet) for recruiting patients to the Swedish RA cohort. This work was supported by grants from the Swedish Research Council, EURATools (LSHG-CT-2005-019015), Neuropromise (LSHM-CT-2005-018637), the Swedish Association for Persons with Neurological Disabilities, the Finnish Academy, the Sigrid Juselius Foundation and Helsinki University Central Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Öckinger.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öckinger, J., Stridh, P., Beyeen, A. et al. Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis. Genes Immun 11, 142–154 (2010). https://doi.org/10.1038/gene.2009.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.82

Keywords

This article is cited by

Search

Quick links