Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Octamer binding protein 2 (Oct2) regulates PD-L2 gene expression in B-1 cells through lineage-specific activity of a unique, intronic promoter

Abstract

Programmed death-1 ligand 2 (PD-L2) expression extends beyond macrophages/dendritic cells to B-1 B cells, a distinct B-cell lineage that is responsible for natural immunoglobulin and which is repertoire skewed toward autoreactive specificities. PD-L2 expression is constitutive in B-1 cells, whereas it is inducible in other cell types, suggesting that PD-L2 is regulated differently in the former versus the latter, and this proved to be the case, both in transcription and promotion. B-1 cells express a PD-L2 transcript that lacks exon 1, in contrast to macrophages/dendritic cells for which exon1 is included, reflecting a unique start site upstream of exon 2. PD-L2 transcription in B-1 cells is regulated by a novel intronic promoter located between exons 1 and 2. This intronic promoter binds Octamer binding protein 1 (Oct1) and Oct2, and although these transcription factors are present in all B cells, Oct2 binding is found in vivo only in B-1 cells and not PD-L2-negative B-2 cells. Moreover, the proximal promoter upstream of exon 1 that is active in macrophages is inactive in B-1 cells. Thus, PD-L2 expression is regulated by two different promoters that function in a lineage-specific manner, with the B-1-specific promoter being constitutively active as a result of Oct1 and Oct2 binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Keir ME, Butte MJ, Freeman GJ, Sharpe AH . PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677–704.

    Article  CAS  Google Scholar 

  2. Okazaki T, Iwai Y, Honjo T . New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 2002; 14: 779–782.

    Article  CAS  Google Scholar 

  3. Okazaki T, Honjo T . The PD-1PD-L pathway in immunological tolerance. Trends Immunol 2006; 27: 195–201.

    Article  CAS  Google Scholar 

  4. Nishimura H, Nose M, Hiai H, Minato N, Honjo T . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141–151.

    Article  CAS  Google Scholar 

  5. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001; 291: 319–322.

    Article  CAS  Google Scholar 

  6. Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 2003; 9: 1477–1483.

    Article  CAS  Google Scholar 

  7. Nishimura H, Minato N, Nakano T, Honjo T . Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 1998; 10: 1563–1572.

    Article  CAS  Google Scholar 

  8. Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T . PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 2003; 198: 39–50.

    Article  CAS  Google Scholar 

  9. Dong H, Zhu G, Tamada K, Chen L . B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–1369.

    Article  CAS  Google Scholar 

  10. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    Article  CAS  Google Scholar 

  11. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001; 2: 261–268.

    Article  CAS  Google Scholar 

  12. Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001; 193: 839–846.

    Article  CAS  Google Scholar 

  13. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003; 33: 2706–2716.

    Article  CAS  Google Scholar 

  14. Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003; 170: 1257–1266.

    Article  CAS  Google Scholar 

  15. Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 2006; 176: 2238–2248.

    Article  CAS  Google Scholar 

  16. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ . The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007; 8: 239–245.

    Article  CAS  Google Scholar 

  17. Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, Azuma M et al. Differential role of programmed death-ligand 1 and programmed death-ligand 2 in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 2006; 176: 3480–3489.

    Article  CAS  Google Scholar 

  18. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J et al. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 2007; 182: 124–134.

    Article  CAS  Google Scholar 

  19. Ito T, Ueno T, Clarkson MR, Yuan X, Jurewicz MM, Yagita H et al. Analysis of the role of negative T cell costimulatory pathways in CD4 and CD8 T cell-mediated alloimmune responses in vivo. J Immunol 2005; 174: 6648–6656.

    Article  CAS  Google Scholar 

  20. Hori J, Wang M, Miyashita M, Tanemoto K, Takahashi H, Takemori T et al. B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J Immunol 2006; 177: 5928–5935.

    Article  CAS  Google Scholar 

  21. Sandner SE, Clarkson MR, Salama AD, Sanchez-Fueyo A, Domenig C, Habicht A et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. J Immunol 2005; 174: 3408–3415.

    Article  CAS  Google Scholar 

  22. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  Google Scholar 

  23. Liu X, Gao JX, Wen J, Yin L, Li O, Zuo T et al. B7DC/PDL2 promotes tumor immunity by a PD-1-independent mechanism. J Exp Med 2003; 197: 1721–1730.

    Article  CAS  Google Scholar 

  24. Liang SC, Greenwald RJ, Latchman YE, Rosas L, Satoskar A, Freeman GJ et al. PD-L1 and PD-L2 have distinct roles in regulating host immunity to cutaneous leishmaniasis. Eur J Immunol 2006; 36: 58–64.

    Article  CAS  Google Scholar 

  25. Radhakrishnan S, Nguyen LT, Ciric B, Ure DR, Zhou B, Tamada K et al. Naturally occurring human IgM antibody that binds B7-DC and potentiates T cell stimulation by dendritic cells. J Immunol 2003; 170: 1830–1838.

    Article  CAS  Google Scholar 

  26. Van Keulen VP, Ciric B, Radhakrishnan S, Heckman KL, Mitsunaga Y, Iijima K et al. Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12. Clin Exp Immunol 2006; 143: 314–321.

    Article  CAS  Google Scholar 

  27. Blocki FA, Radhakrishnan S, Van Keulen VP, Heckman KL, Ciric B, Howe CL et al. Induction of a gene expression program in dendritic cells with a cross-linking IgM antibody to the co-stimulatory molecule B7-DC. FASEB J 2006; 20: 2408–2410.

    Article  CAS  Google Scholar 

  28. Radhakrishnan S, Nguyen LT, Ciric B, Van Keulen VP, Pease LR . B7-DC/PD-L2 cross-linking induces NF-kappaB-dependent protection of dendritic cells from cell death. J Immunol 2007; 178: 1426–1432.

    Article  CAS  Google Scholar 

  29. Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol 2006; 36: 2472–2482.

    Article  CAS  Google Scholar 

  30. Wang SC, Lin CH, Ou TT, Wu CC, Tsai WC, Hu CJ et al. Ligands for programmed cell death 1 gene in patients with systemic lupus erythematosus. J Rheumatol 2007; 34: 721–725.

    PubMed  Google Scholar 

  31. Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL . PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 2007; 37: 2405–2410.

    Article  CAS  Google Scholar 

  32. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002; 169: 5538–5545.

    Article  CAS  Google Scholar 

  33. Kantor AB, Herzenberg LA . Origin of murine B cell lineages. Annu Rev Immunol 1993; 11: 501–538.

    Article  CAS  Google Scholar 

  34. Briles DE, Forman C, Hudak S, Claflin JL . Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med 1982; 156: 1177–1185.

    Article  CAS  Google Scholar 

  35. Boes M, Prodeus AP, Schmidt T, Carroll MC, Chen J . A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med 1998; 188: 2381–2386.

    Article  CAS  Google Scholar 

  36. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999; 286: 2156–2159.

    Article  CAS  Google Scholar 

  37. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J . B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 2000; 192: 271–280.

    Article  CAS  Google Scholar 

  38. Haas KM, Poe JC, Steeber DA, Tedder TF . B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 2005; 23: 7–18.

    Article  CAS  Google Scholar 

  39. Montecino-Rodriguez E, Leathers H, Dorshkind K . Identification of a B-1 B cell-specified progenitor. Nat Immunol 2006; 7: 293–301.

    Article  CAS  Google Scholar 

  40. Zhong X, Lau S, Bai C, Degauque N, Holodick NE, Steven SJ et al. A novel subpopulation of B1 B cells is enriched with autoreactivity in normal and lupus-prone mice. Arthr Rheum 2009; (in press).

  41. Zhao FQ, Zheng Y, Dong B, Oka T . Cloning, genomic organization, expression, and effect on beta-casein promoter activity of a novel isoform of the mouse Oct-1 transcription factor. Gene 2004; 326: 175–187.

    Article  CAS  Google Scholar 

  42. Pevzner V, Kraft R, Kostka S, Lipp M . Phosphorylation of Oct-2 at sites located in the POU domain induces differential downregulation of Oct-2 DNA-binding ability. Biochem J 2000; 347: 29–35.

    Article  CAS  Google Scholar 

  43. Kemler I, Schaffner W . Octamer transcription factors and the cell type-specificity of immunoglobulin gene expression. FASEB J 1990; 4: 1444–1449.

    Article  CAS  Google Scholar 

  44. Tumang JR, Frances R, Yeo SG, Rothstein TL . Cutting edge: spontaneously Ig-secreting B-1 cells violate the accepted paradigm for expression of differentiation-associated transcription factors. J Immunol 2005; 174: 3173–3177.

    Article  CAS  Google Scholar 

  45. Rothstein TL, Wang JK, Panka DJ, Foote LC, Wang Z, Stanger B et al. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 1995; 374: 163–165.

    Article  CAS  Google Scholar 

  46. Shen Q, Zhang W, Cao X, Mou J, Cui L, Hua X . Cloning of full genome sequence of hepatitis E virus of Shanghai swine isolate using RACE method. Virol J 2007; 4: 98.

    Article  Google Scholar 

  47. Repetny KJ, Zhong X, Holodick NE, Rothstein TL, Hansen U . LBP-1a binds a subset of immunoglobulin switch regions in vivo and represses class switch recombination. Eur J Immunol 2009; 39: 1387–1394.

    Article  CAS  Google Scholar 

  48. Frances R, Tumang JR, Rothstein TL . Cutting edge: B-1 cells are deficient in Lck: defective B cell receptor signal transduction in B-1 cells occurs in the absence of elevated Lck expression. J Immunol 2005; 175: 27–31.

    Article  CAS  Google Scholar 

  49. Mizuno T, Rothstein TL . Cutting edge: CD40 engagement eliminates the need for Bruton's tyrosine kinase in B cell receptor signaling for NF-kappa B. J Immunol 2003; 170:2806–2810.

    Article  CAS  Google Scholar 

  50. Tumang JR, Hastings WD, Bai C, Rothstein TL . Peritoneal and splenic B-1 cells are separable by phenotypic, functional, and transcriptomic characteristics. Eur J Immunol 2004; 34: 2158–2167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues for helpful discussions and technical assistance throughout the course of this study. This work was supported in part by USPHS grant AI029690, awarded by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T L Rothstein.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaku, H., Rothstein, T. Octamer binding protein 2 (Oct2) regulates PD-L2 gene expression in B-1 cells through lineage-specific activity of a unique, intronic promoter. Genes Immun 11, 55–66 (2010). https://doi.org/10.1038/gene.2009.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.68

Keywords

This article is cited by

Search

Quick links