Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Relevance of frequent μ-opioid receptor polymorphisms for opioid activity in healthy volunteers

Abstract

Polymorphisms in the μ-opioid receptor gene (OPRM1) are primary candidate sources of clinical variability in opioid therapy. Apart from the 118A>G single nucleotide polymorphism, nothing is known about the role of OPRM1 mutations in opioid therapy. The influence of the OPRM1 mutations on opioid pharmacodynamics was assessed in pooled data from 31 healthy volunteers obtained in previous studies with available plasma concentrations and pupil diameters after intravenous administration of morphine or morphine-6-glucuronide (M6G). A total of 24 candidate ORPM1 mutations were screened for and those found at an allelic frequency of at least 5% in the 31 subjects were analyzed for functional consequences, using population pharmacokinetic–pharmacodynamic modeling of the miotic effects of the opioids as a reliable and sensitive surrogate parameter of the central nervous opioid effects. Polymorphisms at an allelic frequency of 5% (n=310) were 118A>G in exon 1 (11.5%), the IVS2-31G>A (8.9%) and IVS2-691C>G (44.5%) SNPs in intron 2. The 118A>G SNP significantly increased the values of EC50 by a factor of more than 2 (non-mutated: EC50,morphine=30 nmol/l, EC50,M6G=750 nmol/l, 118G carriers: EC50,morphine=66 nmol/l, EC50,M6G=1650 nmol/l), whereas the IVS2-691C>G SNP had no effect. Based on morphine and M6G, the present analysis encourages focusing on the 118A>G SNP when investigating the role of OPRM1 mutations for the activity of opioid analgesics. Other OPRM1 mutations are probably less important either owing to low allelic frequency or due to poor indications for functional consequences. This applies to opioid potency in the context of opioid therapy but not to pain processing or substance addiction, in which opioid receptors are involved but other or additional OPRM1 mutations may be important.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wang JB, Johnson PS, Persico AM, Hawkins AL, Griffin CA, Uhl GR . Human mu opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett 1994; 338: 217–222.

    Article  CAS  Google Scholar 

  2. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996; 383: 819–823.

    Article  CAS  Google Scholar 

  3. Skarke C, Darimont J, Schmidt H, Geisslinger G, Lötsch J . Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther 2003; 73: 107–121.

    Article  CAS  Google Scholar 

  4. Lötsch J, Skarke C, Grösch S, Darimont J, Schmidt H, Geisslinger G . The polymorphism A118G of the human mu-opioid receptor gene decreases the clinical activity of morphine-6-glucuronide but not that of morphine. Pharmacogenetics 2002; 12: 3–9.

    Article  Google Scholar 

  5. Romberg R, Olofsen E, Sarton E, den Hartigh J, Taschner PE, Dahan A . Pharmacokinetic-pharmacodynamic modeling of morphine-6-glucuronide-induced analgesia in healthy volunteers: absence of sex differences. Anesthesiology 2004; 100: 120–133.

    Article  CAS  Google Scholar 

  6. Romberg RR, Olofsen E, Bijl H, Taschner PE, Teppema LJ, Sarton EY et al. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology 2005; 102: 522–530.

    Article  CAS  Google Scholar 

  7. Klepstad P, Rakvag TT, Kaasa S, Holthe M, Dale O, Borchgrevink PC et al. The 118 A>G polymorphism in the human micro-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 2004; 48: 1232–1239.

    Article  CAS  Google Scholar 

  8. Caraco Y, Maroz Y, Davidson E . Variability in alfentanil analgesia maybe attributed to polymorphism in the mu-opiod receptor gene. Clin Pharmacol Ther 2001; 69: p63.

    Google Scholar 

  9. Lötsch J, Zimmermann M, Darimont J, Marx C, Dudziak R, Skarke C et al. Does the A118G polymorphism at the mu-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 2002; 97: 814–819.

    Article  Google Scholar 

  10. Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H et al. Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 2003; 31: 677–680.

    Article  CAS  Google Scholar 

  11. Hoehe MR, Kopke K, Wendel B, Rohde K, Flachmeier C, Kidd KK et al. Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet 2000; 9: 2895–2908.

    Article  CAS  Google Scholar 

  12. Skarke C, Jarrar M, Erb K, Schmidt H, Geisslinger G, Lötsch J . Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther 2003; 74: 303–311.

    Article  CAS  Google Scholar 

  13. Skarke C, Langer M, Jarrar M, Schmidt H, Geisslinger G, Lötsch J . Probenecid interacts with the pharmacokinetics of morphine-6-glucuronide in humans. Anesthesiology 2004; 101: 1394–1399.

    Article  CAS  Google Scholar 

  14. Lötsch J, Geisslinger G . Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol Med 2005; 11: 82–89.

    Article  Google Scholar 

  15. LaForge KS, Yuferov V, Kreek MJ . Opioid receptor and peptide gene polymorphisms: potential implications for addictions. Eur J Pharmacol 2000; 410: 249–268.

    Article  CAS  Google Scholar 

  16. Skarke C, Kirchhof A, Geisslinger G, Lötsch J . Comprehensive mu-opioid-receptor genotyping by pyrosequencing. Clin Chem 2004; 50: 640–644.

    Article  CAS  Google Scholar 

  17. Niu T, Qin ZS, Xu X, Liu JS . Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 2002; 70: 157–169.

    Article  CAS  Google Scholar 

  18. Bertilsson L . Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29: 192–209.

    Article  CAS  Google Scholar 

  19. Unadkat JD, Bartha F, Sheiner LB . Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models. Clin Pharmacol Ther 1986; 40: 86–93.

    Article  CAS  Google Scholar 

  20. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J . Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–371.

    Article  CAS  Google Scholar 

  21. Hull CJ, Van Beem HB, McLeod K, Sibbald A, Watson MJ . A pharmacodynamic model for pancuronium. Br J Anaesth 1978; 50: 1113–1123.

    Article  CAS  Google Scholar 

  22. Holford NH, Sheiner LB . Understanding the dose–effect relationship: clinical application of pharmacokinetic–pharmacodynamic models. Clin Pharmacokinet 1981; 6: 429–453.

    Article  CAS  Google Scholar 

  23. Boeckmann AJ, Sheiner LB, Beal SL . NONMEM User's Guide. University of California San Francisco: San Francisco, 1994.

    Google Scholar 

  24. Penson RT, Joel SP, Clark S, Gloyne A, Slevin ML . Limited phase I study of morphine-3-glucuronide. J Pharm Sci 2001; 90: 1810–1816.

    Article  CAS  Google Scholar 

  25. Penson RT, Joel SP, Bakhshi K, Clark SJ, Langford RM, Slevin ML . Randomized placebo controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 2000; 68: 667–676.

    Article  CAS  Google Scholar 

  26. Wand GS, McCaul M, Yang X, Reynolds J, Gotjen D, Lee S et al. The mu-opioid receptor gene polymorphism (A118G) alters HPA axis activation induced by opioid receptor blockade. Neuropsychopharmacology 2002; 26: 106–114.

    Article  CAS  Google Scholar 

  27. Hernandez-Avila CA, Wand G, Luo X, Gelernter J, Kranzler HR . Association between the cortisol response to opioid blockade and the Asn40Asp polymorphism at the mu-opioid receptor locus (OPRM1). Am J Med Genet 2003; 118B: 60–65.

    Article  Google Scholar 

  28. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 1998; 95: 9608–9613.

    Article  CAS  Google Scholar 

  29. Beyer A, Koch T, Schroder H, Schulz S, Höllt V . Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem 2004; 89: 553–560.

    Article  CAS  Google Scholar 

  30. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL . A single-nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem 2001; 276: 3130–3137.

    Article  CAS  Google Scholar 

  31. Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W . Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem 2005; 280: 32618–32624 (Epub 2005 July 26).

    Article  CAS  Google Scholar 

  32. LaForge KS, Shick V, Spangler R, Proudnikov D, Yuferov V, Lysov Y et al. Detection of single nucleotide polymorphisms of the human mu opioid receptor gene by hybridization or single nucleotide extension on custom oligonucleotide gelpad microchips: potential in studies of addiction. Am J Med Genet 2000; 96: 604–615.

    Article  CAS  Google Scholar 

  33. Berrettini WH, Hoehe MR, Ferraro TN, Demaria PA, Gottheil E . Human mu opioid receptor gene polymorphisms and vulnerability to substance abuse. Addict Biol 1997; 2: 303–308.

    Article  CAS  Google Scholar 

  34. Urraca N, Camarena B, Gomez-Caudillo L, Esmer MC, Nicolini H . micro opioid receptor gene as a candidate for the study of obsessive compulsive disorder with and without tics. Am J Med Genet 2004; 127B: 94–96.

    Article  CAS  Google Scholar 

  35. Gelernter J, Kranzler H, Cubells J . Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol Psychiatr 1999; 4: 476–483.

    Article  CAS  Google Scholar 

  36. Ette EI, Williams PJ . Population pharmacokinetics II: estimation methods. Ann Pharmacother 2004; 38: 1907–1915.

    Article  CAS  Google Scholar 

  37. Luo X, Kranzler HR, Zhao H, Gelernter J . Haplotypes at the OPRM1 locus are associated with susceptibility to substance dependence in European-Americans. Am J Med Genet 2003; 120B: 97–108.

    Article  Google Scholar 

  38. Bergen AW, Kokoszka J, Peterson R, Long JC, Virkkunen M, Linnoila M et al. Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatr 1997; 2: 490–494.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Robert Pfleger Stiftung, Bamberg, Germany (is acknowledged).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Lötsch.

Additional information

Duality of Interest

None declared.

Meetings on which the work has been presented

None.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötsch, J., Geisslinger, G. Relevance of frequent μ-opioid receptor polymorphisms for opioid activity in healthy volunteers. Pharmacogenomics J 6, 200–210 (2006). https://doi.org/10.1038/sj.tpj.6500362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500362

Keywords

This article is cited by

Search

Quick links