Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence

Abstract

Mutations leading to aberrant cytoplasmic localization of Nucleophosmin 1 (NPM1) have been recently identified as the most frequent genetic alteration in acute myelogenous leukemia. However, the oncogenic potential of this nucleophosmin mutant (NPMc+) has never been established, which casts doubt on its role in leukemogenesis. By performing classical transformation assays, we find that NPMc+, but not wild-type NPM, cooperates specifically with adenovirus E1A to transform primary mouse embryonic fibroblasts in soft agar. We demonstrate that NPMc+ blocks the p19Arf (Arf) induction elicited by E1A. Surprisingly, however, we find that NPMc+ induces cellular senescence and that E1A is able to overcome this response. We propose a model whereby the NPMc+ pro-senescence activity needs to be evaded for oncogenic transformation, even though NPMc+ can concomitantly blunt the Arf/p53 pathway. These findings identify for the first time NPMc+ as an oncogene and shed new unexpected light on its mechanism of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva D et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Berk AJ . (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24: 7673–7685.

    Article  CAS  Google Scholar 

  • Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. (2005). Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 25: 8874–8886.

    Article  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . (2002). Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4: 529–533.

    Article  CAS  Google Scholar 

  • Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L et al. (2006). Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 66: 3044–3050.

    Article  CAS  Google Scholar 

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV et al. (1998). E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442.

    Article  CAS  Google Scholar 

  • Den Besten W, Kuo ML, Williams RT, Sherr CJ . (2005). Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle 4: 1593–1598.

    Article  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • Dyson N, Harlow E . (1992). Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv 12: 161–195.

    CAS  PubMed  Google Scholar 

  • Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A et al. (2006). Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 107: 4514–4523.

    Article  CAS  Google Scholar 

  • Falini B, Mecucci C, Tiacci E, Alcalay M, Rosatio R, Pasqualucci L et al. (2005). Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352: 254–266.

    Article  CAS  Google Scholar 

  • Frehlick LJ, Eirin-Lopez JM, Ausio J. (2007). New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays 29: 49–59.

    Article  CAS  Google Scholar 

  • Gallimore PH, Turnell AS . (2001). Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20: 7824–7835.

    Article  CAS  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437: 147–153.

    Article  CAS  Google Scholar 

  • Grisendi S, Mecucci C, Falini B, Pandolfi PP . (2006). Nucleophosmin and cancer. Nat Rev Cancer 6: 493–505.

    Article  CAS  Google Scholar 

  • Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al. (1998). p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 2: 405–415.

    Article  CAS  Google Scholar 

  • Kondo T, Minamino N, Nagamura-Inoue T, Matsumoto M, Taniguchi T, Tanaka N . (1997). Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 15: 1275–1281.

    Article  CAS  Google Scholar 

  • Krug U, Ganser A, Koeffler HP . (2002). Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21: 3475–3495.

    Article  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA . (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Article  CAS  Google Scholar 

  • Lin CY, Liang YC, Yung BY . (2006). Nucleophosmin/B23 regulates transcriptional activation of E2F1 via modulating the promoter binding of NF-kappaB, E2F1 and pRb. Cell Signal 18: 2041–2048.

    Article  CAS  Google Scholar 

  • Lin HJ, Eviner V, Prendergast GC, White E . (1995). Activated H-ras rescues E1A-induced apoptosis and cooperates with E1A to overcome p53-dependent growth arrest. Mol Cell Biol 15: 4536–4544.

    Article  CAS  Google Scholar 

  • Mendes-da-Silva P, Moreira A, Duro-da-Costa J, Matias D, Monteiro C . (2000). Frequent loss of heterozygosity on chromosome 5 in non-small cell lung carcinoma. Mol Pathol 53: 184–187.

    Article  CAS  Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    Article  CAS  Google Scholar 

  • Olney HJ, Le Beau MM . (2002). The Myelodysplastic Syndromes, Pathobiology and Clinical Management. Marcel Dekker: New York, pp 89–120.

    Google Scholar 

  • Palmero I, Pantoja C, Serrano M . (1998). p19ARF links the tumour suppressor p53 to Ras. Nature 395: 125–126.

    Article  CAS  Google Scholar 

  • Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . (1996). The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87: 882–886.

    CAS  Google Scholar 

  • Ruley HE . (1983). Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606.

    Article  CAS  Google Scholar 

  • Sauerbrey A, Stammler G, Zintl F, Volm M . (1998). Expression of the retinoblastoma tumor suppressor gene (RB-1) in acute leukemia. Leuk Lymphoma 28: 275–283.

    Article  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  Google Scholar 

  • Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M et al. (2006). Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107: 4011–4020.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. (2005). Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106: 3747–3754.

    Article  CAS  Google Scholar 

  • Yew PR, Berk AJ . (1992). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357: 82–85.

    Article  CAS  Google Scholar 

  • Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. (1996). The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12: 265–275.

    CAS  Google Scholar 

  • Zhang X, Turnell AS, Gorbea C, Mymryk JS, Gallimore PH, Grand RJ . (2004). The targeting of the proteasomal regulatory subunit S2 by adenovirus E1A causes inhibition of proteasomal activity and increased p53 expression. J Biol Chem 279: 25122–25133.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr G Gilliland for providing us the MSCV Flt3-ITD plasmid and Dr B Falini for the NPMc+ polyclonal antibody. We are grateful to C Nardella, Z Chen and H Lin and all members of PPP laboratory for discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Pandolfi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, K., Grisendi, S., Clohessy, J. et al. The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 26, 7391–7400 (2007). https://doi.org/10.1038/sj.onc.1210549

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210549

Keywords

This article is cited by

Search

Quick links