Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cell growth control: little eukaryotes make big contributions

Abstract

The story of rapamycin is a pharmaceutical fairytale. Discovered as an antifungal activity in a soil sample collected on Easter Island, this macrocyclic lactone and its derivatives are now billion dollar drugs, used in, and being evaluated for, a number of clinical applications. Taking advantage of its antifungal property, the molecular Target Of Rapamycin, TOR, was first described in the budding yeast Saccharomyces cerevisiae. TORs encode large, Ser/Thr protein kinases that reside in two distinct, structurally and functionally conserved, multi-protein complexes. In yeast, these complexes coordinate many different aspects of cell growth. TOR complex 1, TORC1, promotes protein synthesis and other anabolic processes, while inhibiting macroautophagy and other catabolic and stress-response processes. TORC2 primarily regulates cell polarity, although additional readouts of this complex are beginning to be characterized. TORC1 appears to be activated by nutrient cues and inhibited by stresses and rapamycin; however, detailed mechanisms are not known. In contrast, TORC2 is insensitive to rapamycin and physiological regulators of this complex have yet to be defined. Given the unsurpassed resources available to yeast researchers, this simple eukaryote continues to contribute to our understanding of eukaryotic cell growth in general and TOR function in particular.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abeliovich H, Zhang C, Dunn Jr WA, Shokat KM, Klionsky DJ . (2003). Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 14: 477–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ai W, Bertram PG, Tsang CK, Chan TF, Zheng XF . (2002). Regulation of subtelomeric silencing during stress response. Mol Cell 10: 1295–1305.

    CAS  PubMed  Google Scholar 

  • Alarcon CM, Heitman J, Cardenas ME . (1999). Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. Mol Biol Cell 10: 2531–2546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albig AR, Decker CJ . (2001). The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Mol Biol Cell 12: 3428–3438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade MA, Bork P . (1995). HEAT repeats in the Huntington's disease protein. Nat Genet 11: 115–116.

    CAS  PubMed  Google Scholar 

  • Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P . (2001). Comparison of ARM and HEAT protein repeats. J Mol Biol 309: 1–18.

    CAS  PubMed  Google Scholar 

  • Araki T, Uesono Y, Oguchi T, Toh EA . (2005). LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Genes Genet Syst 80: 325–343.

    CAS  PubMed  Google Scholar 

  • Audhya A, Loewith R, Parsons AB, Gao L, Tabuchi M, Zhou H et al. (2004). Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J 23: 3747–3757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayscough KR . (2005). Coupling actin dynamics to the endocytic process in Saccharomyces cerevisiae. Protoplasma 226: 81–88.

    CAS  PubMed  Google Scholar 

  • Bachmann RA, Kim JH, Wu AL, Park IH, Chen J . (2006). A nuclear transport signal in mammalian target of rapamycin is critical for its cytoplasmic signaling to S6 kinase 1. J Biol Chem 281: 7357–7363.

    CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    CAS  PubMed  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN . (1996). TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7: 25–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck T, Delley PA, Hall MN . (2001). Control of the actin cytoskeleton by extracellular signals. Results Probl Cell Differ 32: 231–262.

    CAS  PubMed  Google Scholar 

  • Beck T, Hall MN . (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689–692.

    CAS  PubMed  Google Scholar 

  • Beck T, Schmidt A, Hall MN . (1999). Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146: 1227–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H et al. (1998). The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem 273: 30688–30694.

    CAS  PubMed  Google Scholar 

  • Berset C, Trachsel H, Altmann M . (1998). The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95: 4264–4269.

    CAS  PubMed  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF et al. (2000). Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275: 35727–35733.

    CAS  PubMed  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Chan TF, Ai W, Zheng XF . (2002). Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol Cell Biol 22: 1246–1252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bickle M, Delley PA, Schmidt A, Hall MN . (1998). Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17: 2235–2245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosotti R, Isacchi A, Sonnhammer EL . (2000). FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25: 225–227.

    CAS  PubMed  Google Scholar 

  • Brengues M, Teixeira D, Parker R . (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310: 486–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK . (2004). The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279: 20663–20671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bultynck G, Heath VL, Majeed AP, Galan JM, Haguenauer-Tsapis R, Cyert MS . (2006). Slm1 and Slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol Cell Biol 26: 4729–4745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher RA, Bhullar BS, Perlstein EO, Marsischky G, LaBaer J, Schreiber SL . (2006). Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat Chem Biol 2: 103–109.

    CAS  PubMed  Google Scholar 

  • Butow RA, Avadhani NG . (2004). Mitochondrial signaling: the retrograde response. Mol Cell 14: 1–15.

    CAS  PubMed  Google Scholar 

  • Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM et al. (1993). Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13: 6012–6023.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameroni E, Hulo N, Roosen J, Winderickx J, De Virgilio C . (2004). The novel yeast PAS kinase Rim15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3: 462–468.

    CAS  PubMed  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J . (1999). The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13: 3271–3279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardenas ME, Heitman J . (1995). FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. EMBO J 14: 5892–5907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho J, Zheng XF . (2003). Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. J Biol Chem 278: 16878–16886.

    CAS  PubMed  Google Scholar 

  • Chan TF, Carvalho J, Riles L, Zheng XF . (2000). A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc Natl Acad Sci USA 97: 13227–13232.

    CAS  PubMed  Google Scholar 

  • Chen EJ, Kaiser CA . (2002). Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99: 14837–14842.

    CAS  PubMed  Google Scholar 

  • Chen EJ, Kaiser CA . (2003). LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161: 333–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JC, Powers T . (2006). Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae. Curr Genet 49: 281–293.

    CAS  PubMed  Google Scholar 

  • Cherkasova VA, Hinnebusch AG . (2003). Translational control by TOR and TAP42 through dephosphorylation of eIF2 kinase GCN2. Genes Dev 17: 859–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claypool JA, French SL, Johzuka K, Eliason K, Vu L, Dodd JA et al. (2004). Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol Biol Cell 15: 946–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coller J, Parker R . (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73: 861–890.

    CAS  PubMed  Google Scholar 

  • Coller J, Parker R . (2005). General translational repression by activators of mRNA decapping. Cell 122: 875–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colomina N, Liu Y, Aldea M, Garí E . (2003). TOR regulates the subcellular localization of Ime1, a transcriptional activator of meiotic development in budding yeast. Mol Cell Biol 23: 7415–7424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosentino GP, Schmelzle T, Haghighat A, Helliwell SB, Hall MN, Sonenberg N . (2000). Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol Cell Biol 20: 4604–4613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo JL, Daicho K, Ushimaru T, Hall MN . (2001). The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276: 34441–34444.

    CAS  PubMed  Google Scholar 

  • Crespo JL, Powers T, Fowler B, Hall MN . (2002). The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99: 6784–6789.

    CAS  PubMed  Google Scholar 

  • Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P et al. (2002). The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9: 563–573.

    CAS  PubMed  Google Scholar 

  • Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S . (2005). The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280: 20558–20564.

    CAS  PubMed  Google Scholar 

  • Danaie P, Altmann M, Hall MN, Trachsel H, Helliwell SB . (1999). CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Biochem J 340: 135–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Craene JO, Soetens O, Andre B . (2001). The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. J Biol Chem 276: 43939–43948.

    CAS  PubMed  Google Scholar 

  • De Virgilio C, Loewith R . (2006). The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38: 1476–1481.

    CAS  PubMed  Google Scholar 

  • De Wever V, Reiter W, Ballarini A, Ammerer G, Brocard C . (2005). A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J 24: 4115–4123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean RT . (1977). Lysosomes and membrane recycling. Biochem J 168: 603–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  • deHart AK, Schnell JD, Allen DA, Hicke L . (2002). The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J Cell Biol 156: 241–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • deHart AK, Schnell JD, Allen DA, Tsai JY, Hicke L . (2003). Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell 14: 4676–4684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294: 1102–1105.

    CAS  PubMed  Google Scholar 

  • Desai BN, Myers BR, Schreiber SL . (2002). FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 99: 4319–4324.

    CAS  PubMed  Google Scholar 

  • Di Como CJ, Arndt KT . (1996). Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10: 1904–1916.

    CAS  PubMed  Google Scholar 

  • Dilova I, Aronova S, Chen JC, Powers T . (2004). Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1·Rtg3p-dependent target genes. J Biol Chem 279: 46527–46535.

    CAS  PubMed  Google Scholar 

  • Dilova I, Chen CY, Powers T . (2002). Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr Biol 12: 389–395.

    CAS  PubMed  Google Scholar 

  • Drenan RM, Liu X, Bertram PG, Zheng XF . (2004). FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 279: 772–778.

    CAS  PubMed  Google Scholar 

  • Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C . (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19: 15–26.

    CAS  PubMed  Google Scholar 

  • Düvel K, Broach JR . (2004). TOR: Target of Rapamycin. In: Thomas G, Sabatini Dm and Hall Mn (eds). Springer-Verlag: Berlin, pp. 20–38.

    Google Scholar 

  • Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR . (2003). Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell 11: 1467–1478.

    PubMed  Google Scholar 

  • Edinger AL . (2005). Growth factors regulate cell survival by controlling nutrient transporter expression. Biochem Soc Trans 33: 225–227.

    CAS  PubMed  Google Scholar 

  • Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K et al. (2005). Sir2 blocks extreme life-span extension. Cell 123: 655–667.

    CAS  PubMed  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD . (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292: 288–290.

    CAS  PubMed  Google Scholar 

  • Fadri M, Daquinag A, Wang S, Xue T, Kunz J . (2005). The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 16: 1883–1900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J . (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294: 1942–1945.

    CAS  PubMed  Google Scholar 

  • Funakoshi T, Matsuura A, Noda T, Ohsumi Y . (1997). Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192: 207–213.

    CAS  PubMed  Google Scholar 

  • Gatherar IM, Pollerman S, Dunn-Coleman N, Turner G . (2004). Identification of a novel gene hbrB required for polarised growth in Aspergillus nidulans. Fungal Genet Biol 41: 463–471.

    CAS  PubMed  Google Scholar 

  • Gelperin D, Horton L, DeChant A, Hensold J, Lemmon SK . (2002). Loss of Ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast. Genetics 161: 1453–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginalski K, Zhang H, Grishin NV . (2004). Raptor protein contains a caspase-like domain. Trends Biochem Sci 29: 522–524.

    CAS  PubMed  Google Scholar 

  • Giannattasio S, Liu Z, Thornton J, Butow RA . (2005). Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression. J Biol Chem 280: 42528–42535.

    CAS  PubMed  Google Scholar 

  • Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B et al. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12: 586–597.

    PubMed  PubMed Central  Google Scholar 

  • Görner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H et al. (2002). Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21: 135–144.

    PubMed  PubMed Central  Google Scholar 

  • Griffioen G, Anghileri P, Imre E, Baroni MD, Ruis H . (2000). Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J Biol Chem 275: 1449–1456.

    CAS  PubMed  Google Scholar 

  • Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M et al. (2003). Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302: 1208–1212.

    CAS  PubMed  Google Scholar 

  • Hall DB, Wade JT, Struhl K . (2006). An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 26: 3672–3679.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177–189.

    CAS  PubMed  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL . (1999). Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96: 14866–14870.

    CAS  PubMed  Google Scholar 

  • Harris TE, Chi A, Shabanowitz J, Hunt DF, Rhoads RE, Lawrence Jr JC . (2006). mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin. EMBO J 25: 1659–1668.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris TE, Lawrence Jr JC . (2003). TOR signaling. Sci STKE 2003: re15.

    PubMed  Google Scholar 

  • Heitman J, Movva NR, Hall MN . (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.

    CAS  PubMed  Google Scholar 

  • Helliwell SB, Howald I, Barbet N, Hall MN . (1998a). TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148: 99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell SB, Losko S, Kaiser CA . (2001). Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153: 649–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell SB, Schmidt A, Ohya Y, Hall MN . (1998b). The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 8: 1211–1214.

    CAS  PubMed  Google Scholar 

  • Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN . (1994). TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5: 105–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmings BA, Adams-Pearson C, Maurer F, Müller P, Goris J, Merlevede W et al. (1990). alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29: 3166–3173.

    CAS  PubMed  Google Scholar 

  • Hermann-Le Denmat S, Werner M, Sentenac A, Thuriaux P . (1994). Suppression of yeast RNA polymerase III mutations by FHL1, a gene coding for a fork head protein involved in rRNA processing. Mol Cell Biol 14: 2905–2913.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilti N, Baumann D, Schweingruber AM, Bigler P, Schweingruber ME . (1999). Gene ste20 controls amiloride sensitivity and fertility in Schizosaccharomyces pombe. Curr Genet 35: 585–592.

    CAS  PubMed  Google Scholar 

  • Hinnebusch AG . (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59: 407–450.

    CAS  PubMed  Google Scholar 

  • Ho HL, Shiau YS, Chen MY . (2005). Saccharomyces cerevisiae TSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet 47: 273–288.

    CAS  PubMed  Google Scholar 

  • Holst B, Lunde C, Lages F, Oliveira R, Lucas C, Kielland-Brandt MC . (2000). GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37: 108–124.

    CAS  PubMed  Google Scholar 

  • Hresko RC, Mueckler M . (2005). mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280: 40406–40416.

    CAS  PubMed  Google Scholar 

  • Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F et al. (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 101: 16594–16599.

    CAS  PubMed  Google Scholar 

  • Humphrey EL, Shamji AF, Bernstein BE, Schreiber SL . (2004). Rpd3p relocation mediates a transcriptional response to rapamycin in yeast. Chem Biol 11: 295–299.

    CAS  PubMed  Google Scholar 

  • Iiboshi Y, Papst PJ, Hunger SP, Terada N . (1999). L-Asparaginase inhibits the rapamycin-targeted signaling pathway. Biochem Biophys Res Commun 260: 534–539.

    CAS  PubMed  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y . (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569–4574.

    CAS  PubMed  Google Scholar 

  • Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN . (2001). TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell 8: 1017–1026.

    CAS  PubMed  Google Scholar 

  • Jacinto E, Hall MN . (2003). Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4: 117–126.

    CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A et al. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6: 1122–1128.

    CAS  PubMed  Google Scholar 

  • Jia K, Chen D, Riddle DL . (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131: 3897–3906.

    CAS  PubMed  Google Scholar 

  • Jiang Y, Broach JR . (1999). Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18: 2782–2792.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M . (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297: 395–400.

    CAS  PubMed  Google Scholar 

  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M . (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18: 2491–2505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L . (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Powers III RW, Steffen KK, Westman EA, Hu D, Dang N et al. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193–1196.

    CAS  PubMed  Google Scholar 

  • Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R et al. (2005). Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25: 7239–7248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y . (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150: 1507–1513.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada Y, Sekito T, Ohsumi Y . (2004). Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279: 73–84.

    CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S . (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14: 885–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keith CT, Schreiber SL . (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270: 50–51.

    CAS  PubMed  Google Scholar 

  • Kennedy BK, Austriaco Jr NR, Zhang J, Guarente L . (1995). Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80: 485–496.

    CAS  PubMed  Google Scholar 

  • Kennedy BK, Smith ED, Kaeberlein M . (2005). The enigmatic role of Sir2 in aging. Cell 123: 548–550.

    CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H et al. (2003). GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11: 895–904.

    CAS  PubMed  Google Scholar 

  • Kissova I, Deffieu M, Manon S, Camougrand N . (2004). Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279: 39068–39074.

    CAS  PubMed  Google Scholar 

  • Koltin Y, Faucette L, Bergsma DJ, Levy MA, Cafferkey R, Koser PL et al. (1991). Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol 11: 1718–1723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komeili A, Wedaman KP, O'Shea EK, Powers T . (2000). Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151: 863–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krause SA, Gray JV . (2002). The protein kinase C pathway is required for viability in quiescence in Saccharomyces cerevisiae. Curr Biol 12: 588–593.

    CAS  PubMed  Google Scholar 

  • Krogan NJ, Peng WT, Cagney G, Robinson MD, Haw R, Zhong G et al. (2004). High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell 13: 225–239.

    CAS  PubMed  Google Scholar 

  • Kubota H, Obata T, Ota K, Sasaki T, Ito T . (2003). Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 kinase GCN2. J Biol Chem 278: 20457–20460.

    CAS  PubMed  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN . (1993). Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596.

    CAS  PubMed  Google Scholar 

  • Kunz J, Schneider U, Howald I, Schmidt A, Hall MN . (2000). HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J Biol Chem 275: 37011–37020.

    CAS  PubMed  Google Scholar 

  • Kunz JB, Schwarz H, Mayer A . (2004). Determination of four sequential stages during microautophagy in vitro. J Biol Chem 279: 9987–9996.

    CAS  PubMed  Google Scholar 

  • Kuruvilla FG, Shamji AF, Schreiber SL . (2001). Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci USA 98: 7283–7288.

    CAS  PubMed  Google Scholar 

  • Leao AN, Kiel JA . (2003). Peroxisome homeostasis in Hansenula polymorpha. FEMS Yeast Res 4: 131–139.

    CAS  PubMed  Google Scholar 

  • Lee S, Comer FI, Sasaki A, McLeod IX, Duong Y, Okumura K et al. (2005). TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell 16: 4572–4583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804.

    CAS  PubMed  Google Scholar 

  • Levin DE . (2005). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69: 262–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Butow RA . (1993). RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72: 61–71.

    CAS  PubMed  Google Scholar 

  • Liu Z, Sekito T, Epstein CB, Butow RA . (2001). RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p. EMBO J 20: 7209–7219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Sekito T, Spirek M, Thornton J, Butow RA . (2003). Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12: 401–411.

    CAS  PubMed  Google Scholar 

  • Loewith R, Hall MN . (2004). Cell Growth: control of cell size. In: Hall Mn, Raff M and Thomas G (eds). Cold Spring Harbor Laboratory Press: Cold Spring Harbor, pp. 139–165.

    Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468.

    CAS  PubMed  Google Scholar 

  • Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J . (2002). TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 12: 1448–1461.

    CAS  PubMed  Google Scholar 

  • Lum JJ, DeBerardinis RJ, Thompson CB . (2005). Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6: 439–448.

    CAS  PubMed  Google Scholar 

  • Mach KE, Furge KA, Albright CF . (2000). Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 155: 611–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean M, Harris N, Piper PW . (2001). Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast 18: 499–509.

    CAS  PubMed  Google Scholar 

  • Magasanik B, Kaiser CA . (2002). Nitrogen regulation in Saccharomyces cerevisiae. Gene 290: 1–18.

    CAS  PubMed  Google Scholar 

  • Mager WH, De Kruijff AJ . (1995). Stress-induced transcriptional activation. Microbiol Rev 59: 506–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N et al. (2004). Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA 101: 14315–14322.

    CAS  PubMed  Google Scholar 

  • Martin DE, Demougin P, Hall MN, Bellis M . (2004a). Rank Difference Analysis of Microarrays (RDAM), a novel approach to statistical analysis of microarray expression profiling data. BMC Bioinformatics 5: 148.

    PubMed  PubMed Central  Google Scholar 

  • Martin DE, Soulard A, Hall MN . (2004b). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119: 969–979.

    CAS  PubMed  Google Scholar 

  • Masoro EJ . (2005). Overview of caloric restriction and ageing. Mech Ageing Dev 126: 913–922.

    CAS  PubMed  Google Scholar 

  • Matsuo T, Kubo Y, Watanabe Y, Yamamoto M . (2003). Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. EMBO J 22: 3073–3083.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura A, Tsukada M, Wada Y, Ohsumi Y . (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192: 245–250.

    CAS  PubMed  Google Scholar 

  • Mayordomo I, Estruch F, Sanz P . (2002). Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (stress response element)-regulated genes. J Biol Chem 277: 35650–35656.

    CAS  PubMed  Google Scholar 

  • McMahon LP, Yue W, Santen RJ, Lawrence Jr JC . (2005). Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol Endocrinol 19: 175–183.

    CAS  PubMed  Google Scholar 

  • Mortimer RK, Johnston JR . (1959). Life span of individual yeast cells. Nature 183: 1751–1752.

    CAS  PubMed  Google Scholar 

  • Müller O, Sattler T, Flotenmeyer M, Schwarz H, Plattner H, Mayer A . (2000). Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol 151: 519–528.

    PubMed  PubMed Central  Google Scholar 

  • Nakaji T, Kataoka TR, Watabe K, Nishiyama K, Nojima H, Shimada Y et al. (1999). A new member of the GTPase superfamily that is upregulated in highly metastatic cells. Cancer Lett 147: 139–147.

    CAS  PubMed  Google Scholar 

  • Nakase Y, Fukuda K, Chikashige Y, Tsutsumi C, Morita D, Kawamoto S et al. (2006). A defect in protein farnesylation suppresses a loss of Schizosaccharomyces pombe tsc2+, a homolog of the human gene predisposing tuberous sclerosis complex (TSC). Genetics 173: 569–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K . (2002). Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev 16: 806–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oakes ML, Siddiqi I, French SL, Vu L, Sato M, Aris JP et al. (2006). Role of histone deacetylase Rpd3 in regulating rRNA gene transcription and nucleolar structure in yeast. Mol Cell Biol 26: 3889–3901.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y et al. (2000). Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 85: 1–12.

    CAS  PubMed  Google Scholar 

  • Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al. (2004). Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9: 359–366.

    CAS  PubMed  Google Scholar 

  • Ozcan S, Johnston M . (1999). Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63: 554–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker R, Song H . (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11: 121–127.

    CAS  PubMed  Google Scholar 

  • Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B et al. (2004). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22: 62–69.

    CAS  PubMed  Google Scholar 

  • Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J et al. (2003). TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0 . Mol Cell 12: 1607–1613.

    CAS  PubMed  Google Scholar 

  • Peng T, Golub TR, Sabatini DM . (2002). The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22: 5575–5584.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry J, Kleckner N . (2003). The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112: 151–155.

    CAS  PubMed  Google Scholar 

  • Pichler H, Riezman H . (2004). Where sterols are required for endocytosis. Biochim Biophys Acta 1666: 51–61.

    CAS  PubMed  Google Scholar 

  • Powers III RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S . (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20: 174–184.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powers T, Walter P . (1999). Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10: 987–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC . (2005). Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12: 1613–1621.

    CAS  PubMed  Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A . (2004). Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20: 559–591.

    CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, Gradi A et al. (2000). Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 19: 434–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36: 585–595.

    CAS  PubMed  Google Scholar 

  • Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C . (1998). Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 12: 2943–2955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinke A, Anderson S, McCaffery JM, Yates III J, Aronova S, Chu S et al. (2004). TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279: 14752–14762.

    CAS  PubMed  Google Scholar 

  • Rempola B, Kaniak A, Migdalski A, Rytka J, Slonimski PP, di Rago JP . (2000). Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae. Mol Gen Genet 262: 1081–1092.

    CAS  PubMed  Google Scholar 

  • Robaglia C, Menand B, Lei Y, Sormani R, Nicolai M, Gery C et al. (2004). Plant growth: the translational connection. Biochem Soc Trans 32: 581–584.

    CAS  PubMed  Google Scholar 

  • Roberg KJ, Bickel S, Rowley N, Kaiser CA . (1997). Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147: 1569–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts P, Moshitch-Moshkovitz S, Kvam E, O'Toole E, Winey M, Goldfarb DS . (2003). Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 14: 129–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roelants FM, Torrance PD, Thorner J . (2004). Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 150: 3289–3304.

    CAS  PubMed  Google Scholar 

  • Rohde JR, Campbell S, Zurita-Martinez SA, Cutler NS, Ashe M, Cardenas ME . (2004). TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Mol Cell Biol 24: 8332–8341.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohde JR, Cardenas ME . (2003). The Tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 23: 629–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E et al. (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55: 862–880.

    CAS  PubMed  Google Scholar 

  • Rubio-Texeira M, Kaiser CA . (2006). Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell 17: 3031–3050.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudra D, Zhao Y, Warner JR . (2005). Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J 24: 533–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruis H, Schüller C . (1995). Stress signaling in yeast. BioEssays 17: 959–965.

    CAS  PubMed  Google Scholar 

  • Santhanam A, Hartley A, Düvel K, Broach JR, Garrett S . (2004). PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot Cell 3: 1261–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22: 159–168.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Sabatini DM . (2005). Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J Biol Chem 280: 39505–39509.

    CAS  PubMed  Google Scholar 

  • Sattler T, Mayer A . (2000). Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Biol 151: 529–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D . (2004). Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432: 1058–1061.

    CAS  PubMed  Google Scholar 

  • Schmelzle T, Beck T, Martin DE, Hall MN . (2004). Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 24: 338–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzle T, Hall MN . (2000). TOR, a central controller of cell growth. Cell 103: 253–262.

    CAS  PubMed  Google Scholar 

  • Schmelzle T, Helliwell SB, Hall MN . (2002). Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 22: 1329–1339.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Beck T, Koller A, Kunz J, Hall MN . (1998). The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17: 6924–6931.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Bickle M, Beck T, Hall MN . (1997). The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88: 531–542.

    CAS  PubMed  Google Scholar 

  • Schmidt A, Kunz J, Hall MN . (1996). TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 93: 13780–13785.

    CAS  PubMed  Google Scholar 

  • Schroder W, Bushell G, Sculley T . (2005). The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins. Cell Signal 17: 761–767.

    CAS  PubMed  Google Scholar 

  • Schroder W, Cloonan N, Bushell G, Sculley T . (2004). Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene. Gene 339: 17–23.

    CAS  PubMed  Google Scholar 

  • Scott SV, Nice III DC, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I et al. (2000). Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 275: 25840–25849.

    CAS  PubMed  Google Scholar 

  • Sehgal SN . (2003). Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35: 7S–14S.

    CAS  PubMed  Google Scholar 

  • Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T . (2001). Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 276: 7246–7257.

    CAS  PubMed  Google Scholar 

  • Sekito T, Liu Z, Thornton J, Butow RA . (2002). RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Mol Biol Cell 13: 795–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekito T, Thornton J, Butow RA . (2000). Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11: 2103–2115.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shamji AF, Kuruvilla FG, Schreiber SL . (2000). Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol 10: 1574–1581.

    CAS  PubMed  Google Scholar 

  • Shitamukai A, Hirata D, Sonobe S, Miyakawa T . (2004). Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae. J Biol Chem 279: 3651–3661.

    CAS  PubMed  Google Scholar 

  • Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP . (1994). Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 269: 32027–32030.

    CAS  PubMed  Google Scholar 

  • Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I et al. (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Division 1: 3.

    PubMed  PubMed Central  Google Scholar 

  • Tabancay Jr AP, Gau CL, Machado IM, Uhlmann EJ, Gutmann DH, Guo L et al. (2003). Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J Biol Chem 278: 39921–39930.

    CAS  PubMed  Google Scholar 

  • Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD . (2006). The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26: 5861–5875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talloczy Z, Jiang W, Virgin HWT, Leib DA, Scheuner D, Kaufman RJ et al. (2002). Regulation of starvation- and virus-induced autophagy by the eIF2 kinase signaling pathway. Proc Natl Acad Sci USA 99: 190–195.

    CAS  PubMed  Google Scholar 

  • Tate JJ, Cox KH, Rai R, Cooper TG . (2002). Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression. J Biol Chem 277: 20477–20482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toda T, Cameron S, Sass P, Wigler M . (1988). SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2: 517–527.

    CAS  PubMed  Google Scholar 

  • Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA . (2002). Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 277: 43495–43504.

    CAS  PubMed  Google Scholar 

  • Uesono Y, Toh-e A, Kikuchi Y . (1997). Ssd1p of Saccharomyces cerevisiae associates with RNA. J Biol Chem 272: 16103–16109.

    CAS  PubMed  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627.

    CAS  PubMed  Google Scholar 

  • Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay Jr AP et al. (2005). Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58: 1074–1086.

    CAS  PubMed  Google Scholar 

  • Van Belle D, Andre B . (2001). A genomic view of yeast membrane transporters. Curr Opin Cell Biol 13: 389–398.

    CAS  PubMed  Google Scholar 

  • Van Hoof C, Martens E, Longin S, Jordens J, Stevens I, Janssens V et al. (2005). Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. Biochem J 386: 93–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, Henske EP . (2004). Tsc1+ and tsc2+ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J Biol Chem 279: 12706–12713.

    CAS  PubMed  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F . (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426: 620.

    CAS  PubMed  Google Scholar 

  • Wade JT, Hall DB, Struhl K . (2004). The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432: 1054–1058.

    CAS  PubMed  Google Scholar 

  • Wang L, Fraley CD, Faridi J, Kornberg A, Roth RA . (2003). Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc Natl Acad Sci USA 100: 11249–11254.

    CAS  PubMed  Google Scholar 

  • Wang X, Campbell LE, Miller CM, Proud CG . (1998). Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334: 261–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ . (2001). Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21: 5742–5752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C . (2005). Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J 24: 4271–4278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warner JR . (1999). The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24: 437–440.

    CAS  PubMed  Google Scholar 

  • Wedaman KP, Reinke A, Anderson S, Yates III J, McCaffery JM, Powers T . (2003). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14: 1204–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weindruch RH, Walford RL . (1988). The retardation of aging and disease by dietary restriction. Charles C Thomas: Springfield (Illinois).

    Google Scholar 

  • Weisman R . (2004). The fission yeast TOR proteins and the rapamycin response: an unexpected tale. Curr Top Microbiol Immunol 279: 85–95.

    CAS  PubMed  Google Scholar 

  • Wilkinson MG, Pino TS, Tournier S, Buck V, Martin H, Christiansen J et al. (1999). Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway. EMBO J 18: 4210–4221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woychik NA, Liao SM, Kolodziej PA, Young RA . (1990). Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev 4: 313–323.

    CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Oppliger W, Hall MN . (2005). Molecular organization of target of rapamycin complex 2. J Biol Chem 280: 30697–30704.

    CAS  PubMed  Google Scholar 

  • Xie MW, Jin F, Hwang H, Hwang S, Anand V, Duncan MC et al. (2005). Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci USA 102: 7215–7220.

    CAS  PubMed  Google Scholar 

  • Xu G, Kwon G, Marshall CA, Lin TA, Lawrence Jr JC, McDaniel ML . (1998). Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic B-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem 273: 28178–28184.

    CAS  PubMed  Google Scholar 

  • Yan G, Shen X, Jiang Y . (2006). Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J 25: 3546–3555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Tabancay Jr AP, Urano J, Tamanoi F . (2001). Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol 41: 1339–1347.

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ . (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2): 1542–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza D, Ghavidel A, Heitman J, Schultz MC . (1998). Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18: 4463–4470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Billington Jr CJ, Pan D, Neufeld TP . (2006). Drosophila target of rapamycin kinase functions as a multimer. Genetics 172: 355–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL . (1995). TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82: 121–130.

    CAS  PubMed  Google Scholar 

  • Zheng Y, Jiang Y . (2005). The yeast phosphotyrosyl phosphatase activator is part of the Tap42-phosphatase complexes. Mol Biol Cell 16: 2119–2127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zurita-Martinez SA, Cardenas ME . (2005). Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell 4: 63–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Debbie Ang and David Shore for a critical reading of the manuscript. CDV and RL are supported by the Swiss National Science Foundation and the Canton of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C De Virgilio or R Loewith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Virgilio, C., Loewith, R. Cell growth control: little eukaryotes make big contributions. Oncogene 25, 6392–6415 (2006). https://doi.org/10.1038/sj.onc.1209884

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209884

Keywords

This article is cited by

Search

Quick links