Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage

Abstract

The p53 tumor suppressor gene is activated in response to DNA damage resulting in either growth arrest or apoptosis. We previously demonstrated the specific involvement of homeodomain interacting protein-kinase 2 (HIPK2), a nuclear serine/threonine kinase, in inducing p53-dependent apoptosis through selective p53 phosphorylation at serine 46 after severe genotoxic damage. Here we show that HIPK2 contributes to p53 regulation, independently from serine 46 phosphorylation upon nonapoptotic DNA damage such as that induced by cytostatic doses of cisplatin. We show that HIPK2 depletion by RNA interference inhibits p53 binding to the p21Waf1 promoter affecting its p53-induced transactivation thereby allowing cell proliferation. We found that nonapoptotic DNA damage induces p53 acetylation mediated by the HAT protein PCAF and this p53 post-translational modification is abolished by HIPK2 depletion. In this regard, we found that HIPK2 cooperates with PCAF to induce selectively p53 transcriptional activity toward the p21Waf1 promoter while depletion of either HIPK2 or PCAF abolished this function. These data show that HIPK2 regulates the p53 growth arrest function through its PCAF-mediated acetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Appella E and Anderson CW . (2000). Pathol. Biol. (Paris), 48, 227–245.

  • Appella E and Anderson CW . (2001). Eur. J. Biochem., 268, 2764–2772.

  • Ashcroft M, Taya Y and Vousden KH . (2000). Mol. Cell. Biol., 20, 3224–3233.

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y and Ziv Y . (1998). Science, 281, 1674–1677.

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD and Berger SL . (2001). Mol Cell., 8, 1243–1254.

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E and Fornace AJ . (1999). EMBO J., 18, 6845–6854.

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD . (1998). Science, 281, 1677–1679.

  • Chehab NH, Malikzay A, Appel M and Halazonetis TD . (2000). Genes Dev., 14, 278–288.

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, Fontemaggi G, Fanciulli M, Schiltz L, Blandino G, Balsano C and Levrero M . (2002). Mol. Cell, 9, 175–186.

  • Di Stefano V, Rinaldo C, Sacchi A, Soddu S and D'Orazi G . (2004a). Exp. Cell Res., 293, 311–320.

  • Di Stefano V, Blandino G, Sacchi A, Soddu S and D'Orazi G . (2004b). Oncogene, 23, 5185–5192.

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M and Soddu S . (2002). Nat. Cell Biol., 4, 11–19.

  • el Deiry W, Tokino T, Velculescu VE, Levy DB, Parson R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B . (1993). Cell, 75, 817–825.

  • Espinosa JM and Emerson BM . (2001). Cell, 8, 57–69.

  • Friedlander P, Haupt Y, Prives C and Oren M . (1996). Mol. Cell. Biol., 16, 4961–4971.

  • Giaccia AJ and Kastan LB . (1998). Genes Dev., 12, 2973–2983.

  • Gottlieb T and Oren M . (1996). Biochim. Biophys. Acta, 1287, 77–102.

  • Gu W and Roeder RG . (1997). Cell, 90, 595–606.

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW . (2000). Science, 287, 1824–1827.

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H and Schmitz ML . (2002). Nat. Cell Biol., 4, 1–10.

  • Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C and Pan ZQ . (1997). Mol. Cell. Biol., 17, 7220–7229.

  • Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E and Anderson CW . (1992). Mol. Cell. Biol., 12, 5041–5049.

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD and Berger SL . (1999). Mol. Cell. Biol., 19, 1202–1209.

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG and Gu W . (2003). Proc. Natl. Acad. Sci. USA, 101, 2259–2264.

  • Luo J, Su F, Chen D, Shiloh A and Gu W . (2000). Nature, 408, 377–381.

  • Manni I, Mazzaro G, Gurtner A, Mantovani R, Haugwitz U, Krause K, Engeland K, Sacchi A, Soddu S and Piaggio G . (2001). J. Biol. Chem., 276, 5570–5576.

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A and Kouzarides T . (2000). EMBO J., 19, 662–671.

  • Miyashita T and Reed JC . (1995). Cell, 80, 293–299.

  • Moller A, Sirma H, Hofmann TG, Rueffer S, Klimczak E, Droge W and Schmitz ML . (2003). Cancer Res., 63, 4310–4314.

  • Munshi N, Agalioti T, Lomvardas S, Merita M, Chen G and Thanos D . (2001). Science, 293, 1133–1136.

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y and Taya Y . (2000a). Cell, 102, 849–862.

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T and Tanaka N . (2000b). Science, 288, 1053–1058.

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, Porcellini A, Screpanti I, Balsano C, Alesse E, Gulino A and Levrero M . (2003). Nat. Cell Biol., 5, 552–558.

  • Prives C and Hall PA . (1999). J. Pathol., 187, 112–126.

  • Prives C and Manley JL . (2001). Cell, 107, 815–818.

  • Ryan KM and Vousden KH . (1998). Mol. Cell. Biol., 18, 3692–3698.

  • Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Roenace AJ, Appella E and Anderson CW . (2003). J. Biol. Chem., 39, 37536–37544.

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW and Appella E . (1998). Genes Dev., 12, 2831–2841.

  • Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH and Iggo R . (1999). EMBO J., 18, 4424–4437.

  • Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, Wang JY and Kedes L . (1999). Mol. Cell, 4, 725–734.

  • Shieh SY, Ahn J, Tamai K, Taya Y and Prives C . (2000). Genes Dev., 14, 289–300.

  • Shieh S-Y, Ikeda M, Taya Y and Prives C . (1997). Cell, 9, 325–334.

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C and Abraham RT . (1999). Genes Dev., 13, 152–157.

  • Vogt Sionov R and Haupt Y . (1999). Oncogene, 18, 6145–6157.

  • Wang Y, Blandino G, Oren M and Givol D . (1998). Oncogene, 177, 1923–1930.

Download references

Acknowledgements

We thank all the people cited in the text for their generous gifts of reagents. We are particularly grateful to M Levrero, A Damalas, M Fanciulli, and G Blandino for constant availability, scientific support, and critical reading of the manuscript. We also thank G Fontemaggi, A Gurtner, and T Bruno for their expert technical assistance. This work was supported by grants from AIRC, MIUR-Cofin, MURST-Fondi Ateneo, and FIRB-MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella D'Orazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Stefano, V., Soddu, S., Sacchi, A. et al. HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage. Oncogene 24, 5431–5442 (2005). https://doi.org/10.1038/sj.onc.1208717

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208717

Keywords

This article is cited by

Search

Quick links