Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A possible role for centrosome overduplication in radiation-induced cell death

Abstract

Radiotherapy plays a key role in the treatment of many tumors; however, the precise mechanisms responsible for radiation-induced cell death remain uncertain. We have reported previously that ionizing radiation induces centrosome overduplication in human tumor cells. The present study was designed to elucidate a possible link between centrosome dysregulation and radiation-induced cell death. Exposure to 10 Gy γ-radiation resulted in a substantial increase in cells containing an abnormally high number of centrosomes in a variety of cell lines derived from different types of human solid tumors. These aberrant centrosomes contribute to the assembly of multipolar spindles, thereby causing an unbalanced division of chromosomes and mitotic cell death characterized by the appearance of multi- or micronucleated cells. An extensive analysis of a panel of 10 tumor cell lines revealed a positive correlation between the fraction of cells with multiple centrosomes and the fraction with these nuclear abnormalities after irradiation. When the centrosome overduplication was blocked by enforced expression of p21Waf1/Cip1, the radiation-induced lethality was drastically rescued. Taken together, these results indicate that centrosome overduplication may be a critical event leading to mitotic failure and subsequent cell death following exposure to ionizing radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bae I, Fan S, Bhatia K, Kohn KW, Fornace Jr AJ and O'Connor PM. . 1995 Cancer Res. 55: 2387–2392.

  • Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP and Brinkley BR. . 1995 J. Cell. Biol., 130: 105–115.

  • Bissonnette N and Hunting DJ. . 1998 Oncogene 16: 3461–3469.

  • Brinkley BR. . 1985 Ann. Rev. Cell Biol. 1: 145–172.

  • Brinkley BR and Goepfert TM. . 1998 Cell Motil. Cytoskel. 41: 281–288.

  • Carroll PE, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL, Li YQ, Tarapore P and Fukasawa K. . 1999 Oncogene 18: 1935–1944.

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW and Vogelstein B. . 1999 Nature 401: 616–620.

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K and Roninson IB. . 1999a Cancer Res. 59: 3761–3767.

  • Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J and Roninson IB. . 1999b Oncogene 18: 4808–4818.

  • Chang WP and Little JB. . 1991 Int. J. Radiat. Biol. 60: 483–496.

  • Dewey WC, Ling CC and Meyn RE. . 1995 Int. J. Radiat. Oncol. Biol. Phys. 33: 781–796.

  • Doxsey S. . 1998 Nat. Genet. 20: 104–106.

  • Fukasawa K, Choi T, Kuriyama R, Rulong S and Vande Woude GF. . 1996 Science 271: 1744–1747.

  • Fukasawa K, Wiener F, Vande Woude GF and Mai S. . 1997 Oncogene 15: 1295–1302.

  • Gard DL, Hafezi S, Zhang T and Doxsey SJ. . 1990 J. Cell Biol. 110: 2033–2042.

  • Han Z, Chatterjee D, He DM, Early J, Pantazis P, Wyche JH and Hendrickson EA. . 1995 Mol. Cell. Biol. 15: 5849–5857.

  • Hendry JH and West CM. . 1997 Int. J. Radiat. Biol. 71: 709–719.

  • Hinchcliffe EH, Li C, Thompson EA, Maller JL and Sluder G. . 1999 Science 283: 851–854.

  • Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernandez-Salguero PM, Morgan WF, Deng CX and Fornace Jr AJ. . 1999 Nat. Genet., 23: 176–184.

  • Jonathan EC, Bernhard EJ and McKenna WG. . 1999 Curr. Opin. Chem. Biol. 3: 77–83.

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW. . 1991 Cancer Res. 51: 6304–6311.

  • Kellogg DR, Moritz M and Alberts BM. . 1994 Ann. Rev. Biochem. 63: 639–674.

  • Kuo KK, Sato N, Mizumoto K, Maehara N, Yonemasu H, Ker CG, Sheen PC and Tanaka M. . 2000 Hepatology 31: 59–64.

  • Kusumoto M, Ogawa T, Mizumoto K, Ueno H, Niiyama H, Sato N, Nakamura M and Tanaka M. . 1999 Clin. Cancer Res. 5: 2140–2147.

  • Lacey KR, Jackson PK and Stearns T. . 1999 Proc. Natl. Acad. Sci. USA 96: 2817–2822.

  • Li R, Waga S, Hannon GJ, Beach D and Stillman B. . 1994 Nature 371: 534–537.

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ and Salisbury JL. . 1998 Proc. Natl. Acad. Sci. USA, 95: 2950–2955.

  • Lock RB and Stribinskiene L. . 1996 Cancer Res. 56: 4006–4012.

  • Mantel C, Braun SE, Reis S, Henegariu O, Liu L, Hangoc G and Broxmeyer HE. . 1999 Blood 93: 1390–1398.

  • Matsumoto Y, Hayashi K and Nishida E. . 1999 Curr. Biol. 9: 429–432.

  • McDonald ER, Wu, GS, Waldman T and El-Deiry WS. . 1996 Cancer Res. 56: 2250–2255.

  • Muller WU, Nusse M, Miller BM, Slavotinek A, Viaggi S and Streffer C. . 1996 Mutat. Res. 366: 163–169.

  • Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P and Doxsey SJ. . 1998 Cancer Res. 58: 3974–3985.

  • Raff JW and Glover DM. . 1988 J. Cell Biol. 107: 2009–2019.

  • Sablina AA, Ilyinskaya GV, Rubtsova SN, Agapova LS, Chumakov PM and Kopnin BP. . 1998 J. Cell Sci. 111: 977–984.

  • Sato N, Mizumoto K, Nakamura M, Nakamura K, Kusumoto M, Niiyama H, Ogawa T and Tanaka M. . 1999 Clin. Cancer Res. 5: 963–970.

  • Sato N, Mizumoto K, Nakamura M and Tanaka M. . 2000 Exp. Cell Res. 255: 321–326.

  • Schwartz D, Almog N, Peled A, Goldfinger N and Rotter V. . 1997 Oncogene 15: 2597–2607.

  • Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G and Ashworth A. . 1999 Curr. Biol. 9: 1107–1110.

  • Ueno H, Li JJ, Tomita H, Yamamoto H, Pan Y, Kanegae Y, Saito I and Takeshita A. . 1995 Arterioscl. Thromb. Vasc. Biol. 15: 2246–2253.

  • Ueno H, Masuda S, Nishio S, Li JJ, Yamamoto H and Takeshita A. . 1997 Ann. NY. Acad. Sci., 811: 401–411.

  • Urbani L and Stearns T. . 1999 Curr. Biol. 9: R315–R317.

  • Wang Y, Blandino G and Givol D. . 1999 Oncogene 18: 2643–2649.

  • Weber RG, Bridger JM, Benner A, Weisenberger D, Ehemann V, Reifenberger G and Lichter P. . 1998 Cytogent. Cell Genet. 83: 266–269.

  • Winey M. . 1996 Curr. Biol. 6: 962–964.

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Reid T and Deng CX. . 1999 Mol. Cell. 3: 389–395.

  • Zhang L, Mizumoto K, Sato N, Ogawa T, Kusumoto M, Niiyama H and Tanaka M. . 1999 Cancer Lett. 142: 129–137.

Download references

Acknowledgements

We thank Dr Masahiro Kusumoto and Ms Shoko Nishio for technical assistance. N Sato is a research fellow of the Japan Society for the Promotion of Science. This work was supported in part by a grant from the Ministry of Education, Science, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, N., Mizumoto, K., Nakamura, M. et al. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene 19, 5281–5290 (2000). https://doi.org/10.1038/sj.onc.1203902

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203902

Keywords

This article is cited by

Search

Quick links