Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic stimulation of corticotropin-releasing factor receptor 1 enhances the anxiogenic response of the cholecystokinin system

A Corrigendum to this article was published on 18 November 2009

Abstract

Corticotropin-releasing factor (CRF) and cholecystokinin (CCK), two highly colocalized neuropeptides, have been linked to the etiology of stress-related anxiety disorders. Recent evidence points to the possibility that some of the anxiogenic effects of the central CCK system take place through interplay with the CRF system. The aim of the present study was to examine the effects of chronic, mild activation of CRF receptor 1 (CRF1) on the central CCK system of the C57BL/6J mouse. As shown by in situ hybridization, real-Time PCR and immunohistochemistry, 5 days of intracerebroventricular (i.c.v.) injections of a subeffective dose (2.3 pmol) of cortagine, a CRF1-selective agonist, resulted in an increase in CCK mRNA levels and CCK2 receptor immunoreactivity in several brain regions, such as amygdala and hippocampus, known to be involved in the regulation of anxiety. Mice with elevated endogenous central CCK tone exhibited significantly higher anxiety-like behaviors in the open-field task and elevated plus maze, and enhanced conditioned fear. These behavioral changes were reversed by i.c.v. administration of the CCK2-selective antagonist LY225910, after 5 days of priming with cortagine. Under the same conditions, the intraperitoneal administration of the CRF1 antagonist antalarmin was ineffective. This result indicated that once the CCK system was sensitized by prior CRF1 activation, it exhibited its anxiogenic effects, without influence by CRF1, possibly because of its observed downregulation. In sum, our results provide a novel model for the interaction of the CRF and CCK systems contributing to the development of hypersensitive emotional circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Bradwejn J . Neurobiological investigations into the role of cholecystokinin in panic disorder. J Psychiatry Neurosci 1993; 18: 178–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Smoller JW, Yamaki LH, Fagerness JA, Biederman J, Racette S, Laird NM et al. The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biol Psychiatry 2005; 57: 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  3. Vanderhaeghen JJ, Signeau JC, Gepts W . New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature 1975; 257: 604–605.

    Article  CAS  PubMed  Google Scholar 

  4. Rotzinger S, Vaccarino FJ . Cholecystokinin receptor subtypes: role in the modulation of anxiety-related and reward-related behaviours in animal models. J Psychiatry Neurosci 2003; 28: 171–181.

    PubMed  PubMed Central  Google Scholar 

  5. Dauge V, Lena I . CCK in anxiety and cognitive processes. Neurosci Biobehav Rev 1998; 22: 815–825.

    Article  CAS  PubMed  Google Scholar 

  6. Bradwejn J, Koszycki D . Cholecystokinin and panic disorder: past and future clinical research strategies. Scand J Clin Lab Invest Suppl 2001; 234: 19–27.

    Article  CAS  PubMed  Google Scholar 

  7. Harro J, Lofberg C, Rehfeld JF, Oreland L . Cholecystokinin peptides and receptors in the rat brain during stress. Naunyn Schmiedebergs Arch Pharmacol 1996; 354: 59–66.

    Article  CAS  PubMed  Google Scholar 

  8. Koks S, Vasar E, Soosaar A, Lang A, Volke V, Voikar V et al. Relation of exploratory behavior of rats in elevated plus-maze to brain receptor binding properties and serum growth hormone levels. Eur Neuropsychopharmacol 1997; 7: 289–294.

    Article  PubMed  Google Scholar 

  9. Horinouchi Y, Akiyoshi J, Nagata A, Matsushita H, Tsutsumi T, Isogawa K et al. Reduced anxious behavior in mice lacking the CCK2 receptor gene. Eur Neuropsychopharmacol 2004; 14: 157–161.

    Article  CAS  PubMed  Google Scholar 

  10. Spiess J, Rivier J, Rivier C, Vale W . Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci USA 1981; 78: 6517–6521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 1981; 213: 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  12. Chalmers DT, Lovenberg TW, De Souza EB . Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995; 15: 6340–6350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000; 428: 191–212.

    Article  CAS  PubMed  Google Scholar 

  14. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 1998; 19: 162–166.

    Article  CAS  PubMed  Google Scholar 

  15. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  16. Bale TL, Contarino A, Smit GW, Chan R, Gold LH, Sawchenko PE et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000; 24: 410–414.

    Article  CAS  PubMed  Google Scholar 

  17. Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet 2000; 24: 415–419.

    Article  CAS  PubMed  Google Scholar 

  18. Sajdyk TJ, Schober DA, Gehlert DR, Shekhar A . Role of corticotropin-releasing factor and urocortin within the basolateral amygdala of rats in anxiety and panic responses. Behav Brain Res 1999; 100: 207–215.

    Article  CAS  PubMed  Google Scholar 

  19. Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A . Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 2004; 24: 3471–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tezval H, Jahn O, Todorovic C, Sasse A, Eckart K, Spiess J . Cortagine, a specific agonist of corticotropin-releasing factor receptor subtype 1, is anxiogenic and antidepressive in the mouse model. Proc Natl Acad Sci USA 2004; 101: 9468–9473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Griebel G . Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther 1999; 82: 1–61.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon JA, Hen R . Genetic approaches to the study of anxiety. Annu Rev Neurosci 2004; 27: 193–222.

    Article  CAS  PubMed  Google Scholar 

  23. Bertoglio LJ, Zangrossi Jr H . Involvement of dorsolateral periaqueductal gray cholecystokinin-2 receptors in the regulation of a panic-related behavior in rats. Neurosci Biobehav Rev 2005; 29: 1361–1373.

    Article  Google Scholar 

  24. Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP . In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 1996; 137: 5747–5750.

    Article  CAS  PubMed  Google Scholar 

  25. Franklin KBJ, Paxinos G . The Mouse Brain in Stereotaxic Coordinates. Academic Press: San Diego, CA, 2001.

    Google Scholar 

  26. Radulovic J, Kammermeier J, Spiess J . Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure. J Neurosci 1998; 18: 7452–7461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)). Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  28. Fanselow MS . Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 2000; 110: 73–81.

    Article  CAS  PubMed  Google Scholar 

  29. Noble F, Roques BP . CCK-B receptor: chemistry, molecular biology, biochemistry and pharmacology. Prog Neurobiol 1999; 58: 349–379.

    Article  CAS  PubMed  Google Scholar 

  30. Barlow DH . Cognitive-behavioral therapy for panic disorder: current status. J Clin Psychiatry 1997; 58: 32–36.

    Article  PubMed  Google Scholar 

  31. Meziane H, Devigne C, Tramu G, Soumireu-Mourat B . Distribution of cholecystokinin immunoreactivity in the BALB/c mouse forebrain: an immunocytochemical study. J chem Neuronat 1997; 12: 191–209.

    Article  CAS  Google Scholar 

  32. Cain BM, Connolly K, Blum A, Vishnuvardhan D, Marchand JE, Beinfeld MC . Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain. J Comp Neurol 2003; 467: 307–325.

    Article  CAS  PubMed  Google Scholar 

  33. Bouton ME, Mineka S, Barlow DH . A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 2001; 108: 4–32.

    Article  CAS  PubMed  Google Scholar 

  34. Cohen H, Kaplan Z, Kotler M . CCK-antagonists in a rat exposed to acute stress: implication for anxiety associated with post-traumatic stress disorder. Depress Anxiety 1999; 10: 8–17.

    Article  CAS  PubMed  Google Scholar 

  35. Siegel RA, Duker EM, Pahnke U, Wuttke W . Stress-induced changes in cholecystokinin and substance P concentrations in discrete regions of the rat hypothalamus. Neuroendocrinology 1987; 46: 75–81.

    Article  CAS  PubMed  Google Scholar 

  36. Nelovkov A, Areda T, Innos J, Koks S, Vasar E . Rats displaying distinct exploratory activity also have different expression patterns of gamma-aminobutyric acid- and cholecystokinin-related genes in brain regions. Brain Res 2006; 1100: 21–31.

    Article  CAS  PubMed  Google Scholar 

  37. Farook JM, Zhu YZ, Wang H, Moochhala S, Lee L, Wong PT . Strain differences in freezing behavior of PVG hooded and Sprague-Dawley rats: differential cortical expression of cholecystokinin2 receptors. Neuroreport 2001; 27: 17–20.

    Google Scholar 

  38. Chen Q, Nakajima A, Meacham C, Tang YP . Elevated cholecystokininergic tone constitutes an important molecular/neuronal mechanism for the expression of anxiety in the mouse. Proc Natl Acad Sci USA 2006; 103: 3881–3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis M . Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 1998; 44: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  40. LeDoux J . The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 2003; 23: 727–738.

    Article  PubMed  Google Scholar 

  41. Zarbin MA, Innis RB, Wamsley JK, Snyder SH, Kuhar MJ . Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neurosci 1983; 3: 877–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moran TH, Schwartz GJ . Neurobiology of cholecystokinin. Crit Rev Neurobiol 1994; 9: 1–28.

    CAS  PubMed  Google Scholar 

  43. Harro J, Pold M, Vasar E . Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment. Naunyn Schmiedebergs Arch Pharmacol 1990; 341: 62–67.

    CAS  PubMed  Google Scholar 

  44. Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A . Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 1999; 403: 229–260.

    Article  CAS  PubMed  Google Scholar 

  45. Petrovich GD, Canteras NS, Swanson LW . Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 2001; 38: 247–289.

    Article  CAS  PubMed  Google Scholar 

  46. Izquierdo I, Medina JH . Role of the amygdala, hippocampus and entorhinal cortex in memory consolidation and expression. Braz J Med Biol Res 1993; 26: 573–589.

    CAS  PubMed  Google Scholar 

  47. Kim JJ, Rison RA, Fanselow MS . Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav Neurosci 1993; 107: 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  48. Yaniv D, Vouimba RM, Diamond DM, Richter-Levin G . Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles. Neuroscience 2003; 120: 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  49. Maren S, Quirk GJ . Neuronal signalling of fear memory. Nat Rev Neurosci 2004; 5: 844–852.

    CAS  PubMed  Google Scholar 

  50. Tsutsumi T, Akiyoshi J, Isogawa K, Kohno Y, Hikichi T, Nagayama H . Suppression of conditioned fear by administration of CCKB receptor antagonist PD135158. Neuropeptides 1999; 33: 483–486.

    Article  CAS  PubMed  Google Scholar 

  51. Raud S, Innos J, Abramov U, Reimets A, Koks S, Soosaar A et al. Targeted invalidation of CCK2 receptor gene induces anxiolytic-like action in light-dark exploration, but not in fear conditioning test. Psychopharmacology (Berl) 2005; 181: 347–357.

    Article  CAS  Google Scholar 

  52. Miyasaka K, Kobayashi S, Ohta M, Kanai S, Yoshida Y, Nagata A et al. Anxiety-related behaviors in cholecystokinin-A, B, and AB receptor gene knockout mice in the plus-maze. Neurosci Lett 2002; 335: 115–118.

    Article  CAS  PubMed  Google Scholar 

  53. Swiergiel AH, Takahashi LK, Kalin NH . Attenuation of stress-induced behavior by antagonism of corticotropin-releasing factor receptors in the central amygdala in the rat. Brain Res 1993; 623: 229–234.

    Article  CAS  PubMed  Google Scholar 

  54. Merlo Pich E, Lorang M, Yeganeh M, Rodriguez de Fonseca F, Raber J, Koob GF et al. Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 1995; 15: 5439–5447.

    Article  CAS  PubMed  Google Scholar 

  55. Sajdyk TJ, Gehlert DR . Astressin, a corticotropin releasing factor antagonist, reverses the anxiogenic effects of urocortin when administered into the basolateral amygdala. Brain Res 2000; 877: 226–234.

    Article  CAS  PubMed  Google Scholar 

  56. Mansi JA, Rivest S, Drolet G . Regulation of corticotropin-releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF. Endocrinology 1996; 137: 4619–4629.

    Article  CAS  PubMed  Google Scholar 

  57. Biro E, Sarnyai Z, Penke B, Szabo G, Telegdy G . Role of endogenous corticotropin-releasing factor in mediation of neuroendocrine and behavioral responses to cholecystokinin octapeptide sulfate ester in rats. Neuroendocrinology 1993; 57: 340–345.

    Article  CAS  PubMed  Google Scholar 

  58. Kamilaris TC, Johnson EO, Calogero AE, Kalogeras KT, Bernardini R, Chrousos GP et al. Cholecystokinin-octapeptide stimulates hypothalamic-pituitary-adrenal function in rats: role of corticotropin-releasing hormone. Endocrinology 1992; 130: 1764–1774.

    CAS  PubMed  Google Scholar 

  59. Peeters PJ, Gohlmann HW, Van den Wyngaert I, Swagemakers SM, Bijnens L, Kass SU et al. Transcriptional response to corticotropin-releasing factor in AtT-20 cells. Mol Pharmacol 2004; 66: 1083–1092.

    Article  CAS  PubMed  Google Scholar 

  60. Linthorst AC, Reul JM . Inflammation and brain function under basal conditions and during long-term elevation of brain corticotropin-releasing hormone levels. Adv Exp Med Biol 1999; 461: 129–152.

    Article  CAS  PubMed  Google Scholar 

  61. Matsuzaki I, Takamatsu Y, Moroji T . The effects of intracerebroventricularly injected corticotropin-releasing factor (CRF) on the central nervous system: behavioural and biochemical studies. Neuropeptides 1989; 13: 147–155.

    Article  CAS  PubMed  Google Scholar 

  62. Skelton KH, Nemeroff CB, Knight DL, Owens MJ . Chronic administration of the triazolobenzodiazepine alprazolam produces opposite effects on corticotropin-releasing factor and urocortin neuronal systems. J Neurosci 2000; 20: 1240–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hokfelt T, Rehfeld JF, Skirboll L, Ivemark B, Goldstein M, Markey K . Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature 1980; 12: 476–478.

    Article  Google Scholar 

  64. van der Kooy D, Hunt SP, Steinbusch HW, Verhofstad AA . Separate populations of cholecystokinin and 5-hydroxytryptamine-containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections. Neurosci Lett 1981; 26: 25–30.

    Article  CAS  PubMed  Google Scholar 

  65. Hendry SH, Jones EG, DeFelipe J, Schmechel D, Brandon C, Emson PC . Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci USA 1984; 81: 6526–6530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Owens MJ, Nemeroff CB . Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 1991; 43: 425–473.

    CAS  PubMed  Google Scholar 

  67. Koob GF, Heinrichs SC . A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999; 848: 141–152.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Martin Rayner for helpful discussion during preparation of the manuscript. This work was supported by Max Planck Society, NIH grant 5U54NS039406-08 and NMRC grant (NMRC/0754/2003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Todorovic or Y-Z Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherrin, T., Todorovic, C., Zeyda, T. et al. Chronic stimulation of corticotropin-releasing factor receptor 1 enhances the anxiogenic response of the cholecystokinin system. Mol Psychiatry 14, 291–307 (2009). https://doi.org/10.1038/sj.mp.4002121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002121

Keywords

This article is cited by

Search

Quick links