Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Telomerase is limiting the growth of acute myeloid leukemia cells

Abstract

Telomeres play an important role in the proliferation and senescence of normal and malignant cells. To test the role of telomerase in acute myeloid leukemia (AML), we expressed the telomerase reverse transcriptase (hTERT) gene, a dominant-negative hTERT (DN-hTERT) (D868A, D869A) gene, or a gene encoding green fluorescence protein (GFP) in the leukemia cell line K562 and in primary AML cells from different patients, using retroviral vectors. Cells transduced with hTERT exhibited elevated levels of telomerase activity compared to GFP controls, whereas cells expressing DN-hTERT had decreased telomerase activity. K562 populations transduced with DN-hTERT showed reduced clonogenicity, telomere dysfunction and increased numbers of apoptotic cells compared to GFP- or hTERT-transduced cells. Two of four clones transduced with DN-hTERT died after 30 and 53 population doublings, respectively. Transduced AML cells were tested in primary colony-forming unit (CFU) and suspension culture assays. Relative to hTERT- and GFP-transduced controls, AML cells transfected with DN-hTERT produced fewer CFU and showed lower engraftment after transplantation into sublethally irradiated β2-m−/− nonobese diabetic/severe combined immunodeficient mice. We conclude that telomerase is limiting the growth of the leukemic cell line K562 and primary AML progenitor cells. Our data warrant further studies of the therapeutic use of telomerase inhibitors in AML.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Blackburn EH . Structure and function of telomeres. Nature 1991; 350: 569–572.

    Article  CAS  Google Scholar 

  2. Broccoli D, Smogorzewska A, Chong L, de Lange T . Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 1997; 17: 231–235.

    Article  CAS  Google Scholar 

  3. Blackburn EH . Telomeres: no end in sight. Cell 1994; 77: 621–623.

    Article  CAS  Google Scholar 

  4. de Lange T . Telomere dynamics and genome instability in human cancer. In: Telomeres. New York: Cold Spring Harbor Laboratory Press, 1995, pp 265–293.

    Google Scholar 

  5. Zakian VA . Telomeres: beginning to understand the end. Science 1995; 270: 1601–1607.

    Article  CAS  Google Scholar 

  6. Greider CW . Telomere length regulation. Annu Rev Biochem 1996; 65: 337–365.

    Article  CAS  Google Scholar 

  7. Blackburn EH . Telomerases. Annu Rev Biochem 1992; 61: 113–129.

    Article  CAS  Google Scholar 

  8. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR . Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 1997; 276: 561–567.

    Article  CAS  Google Scholar 

  9. McEachern MJ, Krauskopf A, Blackburn EH . Telomeres and their control. Annu Rev Genet 2000; 34: 331–358.

    Article  CAS  Google Scholar 

  10. Watson JD . Origin of concatameric T4 DNA. Nat New Biol 1972; 239: 197–201.

    Article  CAS  Google Scholar 

  11. Olovnikov AM . A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 1973; 41: 181–190.

    Article  CAS  Google Scholar 

  12. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB . Telomere end-replication problem and cell aging. J Mol Biol 1992; 225: 951–960.

    Article  CAS  Google Scholar 

  13. Harley CB . Telomeres and Aging. In: Telomeres. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1995, pp 247–265.

    Google Scholar 

  14. Saretzki G, Sitte N, Merkel U, Wurm RE, von Zglinicki T . Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene 1999; 18: 5148–5158.

    Article  CAS  Google Scholar 

  15. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    Article  CAS  Google Scholar 

  16. Wright WE, Shay JW . Telomere positional effects and the regulation of cellular senescence. TIG 1992; 8: 193–197.

    Article  CAS  Google Scholar 

  17. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.

    Article  CAS  Google Scholar 

  18. von Zglinicki T, Pilger R, Sitte N . Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 2000; 28: 64–74.

    Article  CAS  Google Scholar 

  19. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S . Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995; 85: 2315–2320.

    CAS  PubMed  Google Scholar 

  20. Ohyashiki JH, Ohyashiki K, Iwama H, Hayashi S, Toyama K, Shay JW . Clinical implications of telomerase activity levels in acute leukemia. Clin Cancer Res 1997; 3: 619–625.

    CAS  PubMed  Google Scholar 

  21. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MAS . Telomerase activity and telomere length in acute and chronic leukemia, pre and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  22. Sawyers CL, Denny CT, Witte ON . Leukemia and the disruption of normal hematopoiesis. Cell 1991; 64: 337–350.

    Article  CAS  Google Scholar 

  23. Haase D, Feuring-Buske M, Konemann S, Fonatsch C, Troff C, Verbeek W et al. Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations. Blood 1995; 86: 2906–2912.

    CAS  PubMed  Google Scholar 

  24. Fialkow PJ, Martin PJ, Najfeld V, Penfold GK, Jacobson RJ, Hansen JA . Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 1981; 58: 158–163.

    CAS  PubMed  Google Scholar 

  25. Sutherland HJ, Blair A, Zapf RW . Characterization of a hierarchy in human acute myeloid leukemia progenitor cells. Blood 1996; 87: 4754–4761.

    CAS  PubMed  Google Scholar 

  26. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–736.

    Article  CAS  Google Scholar 

  27. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  Google Scholar 

  28. Sabbath KD, Ball ED, Larcom P, Davis RB, Griffin JD . Heterogeneity of clonogenic cells in acute myeloblastic leukemia. J Clin Invest 1985; 75: 746–753.

    Article  CAS  Google Scholar 

  29. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1 (CD90) on acute myeloid leukaemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104–3112.

    CAS  PubMed  Google Scholar 

  30. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5: 1164–1170.

    Article  CAS  Google Scholar 

  31. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO . Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13: 2388–2399.

    Article  CAS  Google Scholar 

  32. Hawley RG, Lieu FHL, Fong AZC, Hawley TS . Versatile retroviral vectors for potential use in gene therapy. Gene Therapy 1994; 1: 136–138.

    CAS  PubMed  Google Scholar 

  33. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV . Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65: 2220–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lansdorp PM, Dragowska W . Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med 1992; 175: 1501–1509.

    Article  CAS  Google Scholar 

  35. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukaemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA-DR. Blood 1998; 92: 4325–4335.

    CAS  PubMed  Google Scholar 

  36. Verlinden SF, van Es HH, van Bekkum DW . Serial bone marrow sampling for long-term follow up of human hematopoiesis in NOD/SCID mice. Exp Hematol 1998; 26: 627–630.

    CAS  PubMed  Google Scholar 

  37. Kim NW, Wu F . Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 1997; 25: 2595–2597.

    Article  CAS  Google Scholar 

  38. Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM . Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 1998; 16: 743–747.

    Article  CAS  Google Scholar 

  39. Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, Hoglund M, Mitelman F, Mertens F, Mandahl N . Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 2001; 98: 12683–12688.

    Article  CAS  Google Scholar 

  40. Röth A, Yssel H, Pène J, Chavez EA, Schertzer M, Lansdorp PM et al. Telomerase levels control the life span of human T lymphocytes. Blood 2003; 102: 849–857.

    Article  Google Scholar 

  41. Maser RS, DePinho RA . Connecting chromosomes, crisis, and cancer. Science 2002; 297: 565–569.

    Article  CAS  Google Scholar 

  42. Tauchi T, Nakajima A, Sashida G, Shimamoto T, Ohyashiki JH, Abe K et al. Inhibition of human telomerase enhances the effect of the tyrosine kinase inhibitor, imatinib, in BCR-ABL-positive leukemia cells. Clin Cancer Res 2002; 8: 3341–3347.

    CAS  PubMed  Google Scholar 

  43. O'Hagan RC, Chang S, Maser RS, Mohan R, Artandi SE, Chin L et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2002; 2: 149–155.

    Article  CAS  Google Scholar 

  44. Ailles LE, Humphries RK, Thomas TE, Hogge DE . Retroviral marking of acute myelogenous leukemia progenitors that initiate long-term culture and growth in immunodeficient mice. Exp Hematol 1999; 27: 1609–1620.

    Article  CAS  Google Scholar 

  45. Roddie PH, Paterson T, Turner ML . Gene transfer to primary acute myeloid leukaemia blasts and myeloid leukaemia cell lines. Cytokines Cell Mol Ther 2000; 6: 127–134.

    Article  CAS  Google Scholar 

  46. Hughes PF, Thacker JD, Hogge D, Sutherland HJ, Thomas TE, Lansdorp PM et al. Retroviral gene transfer to primitive normal and leukemic hematopoietic cells using clinically applicable procedures. J Clin Invest 1992; 89: 1817–1824.

    Article  CAS  Google Scholar 

  47. Kuhr T, Dougherty GJ, Klingemann HG . Transfer of the tumor necrosis factor alpha gene into hematopoietic progenitor cells as a model for site-specific cytokine delivery after marrow transplantation. Blood 1994; 84: 2966–2970.

    CAS  PubMed  Google Scholar 

  48. Dilloo D, Bacon K, Holden W, Zhong W, Burdach S, Zlotnik A et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 1996; 2: 1090.

    Article  CAS  Google Scholar 

  49. Lieu FH, Hawley TS, Fong AZ, Hawley RG . Transmissibility of murine stem cell virus-based retroviral vectors carrying both interleukin-12 cDNAs and a third gene: implications for immune gene therapy. Cancer Gene Ther 1997; 4: 167–175.

    CAS  PubMed  Google Scholar 

  50. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE . Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    Article  CAS  Google Scholar 

  51. Xu D, Gruber A, Peterson C, Pisa P . Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br J Haematol 1998; 102: 1367–1375.

    Article  CAS  Google Scholar 

  52. Li B, Yang J, Andrews C, Chen YX, Toofanfard P, Huang RW et al. Telomerase activity in preleukemia and acute myelogenous leukemia. Leuk Lymphoma 2000; 36: 579–587.

    Article  Google Scholar 

  53. Verstovsek S, Kantarjian H, Manshouri T, Cortes J, Faderl S, Giles FJ et al. Increased telomerase activity is associated with shorter survival in patients with chronic phase chronic myeloid leukemia. Cancer 2003; 97: 1248–1252.

    Article  CAS  Google Scholar 

  54. Yuan Z, Mei HD . Inhibition of telomerase activity with hTERT antisense increases the effect of CDDP-induced apoptosis in myeloid leukemia. Hematol J 2002; 3: 201–205.

    Article  CAS  Google Scholar 

  55. Nakajima A, Tauchi T, Sashida G, Sumi M, Abe K, Yamamoto K et al. Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy. Leukemia 2003; 17: 560–567.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants AI29524 from the National Institutes of Health and by a grant from the National Cancer Institute of Canada with funds from the Terry Fox Run. AR is funded by a grant from the Deutsche Forschungsgemeinschaft. We thank Dr Robert Weinberg (MIT, Boston, MA, USA) for hTERT cDNA and Dr Lea Harrington (Toronto) for DN-hTERT (D868A, D869A) cDNA. Dr Keith Humphries and Mike Schertzer (Vancouver) are thanked for help with the construction of the retroviral vectors and Irma Vulto for telomere length measurements.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röth, A., Vercauteren, S., Sutherland, H. et al. Telomerase is limiting the growth of acute myeloid leukemia cells. Leukemia 17, 2410–2417 (2003). https://doi.org/10.1038/sj.leu.2403177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403177

Keywords

This article is cited by

Search

Quick links