Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Synergistic cytotoxic effects in myeloid leukemia cells upon cotreatment with farnesyltransferase and geranylgeranyl transferase-I inhibitors

Abstract

As deregulation of RAS signaling is important in the pathogenesis of myeloid leukemias, molecular targeting of RAS signaling may be a promising therapeutic strategy. Farnesyl transferase inhibitors (FTIs) are the most promising class of these new cancer therapeutics. Several FTIs have entered phase II clinical trials in acute myeloid leukemia (AML). Since geranylgeranylation of K-RAS and N-RAS in the presence of FTIs may represent an important mechanism of FTI resistance, 6 geranylgeranyl transferase-I inhibitors (GGTIs) were screened alone and in combination with FTI for growth inhibition of myeloid leukemia cells. Significant growth inhibition (>70%) in myeloid cell lines was observed for GGTI-286 (9/19), GGTI-298 (14/19), GGTI-2147 (16/19) and FTI L-744,832 (17/17). GGTI treatment of NB-4 cells resulted in an accumulation of cells in G0/G1, whereas FTI L-744,832 primarily caused an increase in G2/M. FTI and GGTIs both induced apoptosis. In all cases, FTI/GGTI cotreatment led to synergistic cytotoxic effects in both myeloid cell lines (5/5) and primary AML cells (6/6). This synergy coincided with increased apoptosis. FTI/GGTI cotreatment caused an accumulation of unprocessed N-RAS and inactive N-RAS–RAF complexes. Our results suggest that alternative geranylgeranylation of N-RAS may represent an important mechanism of resistance to FTI monotherapy in myeloid leukemia cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Bos JL . RAS oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  Google Scholar 

  2. Clark GJ, Der CJ . Ras proto-oncogene activation in human malignancy. In: Garrett CT, Sell S (eds). Cellular Cancer Markers. Totowa, NJ: Humana Press, 1995, pp. 17–52.

    Chapter  Google Scholar 

  3. Reuther GW, Der CJ . The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr Opin Cell Biol 2000; 12: 157–165.

    Article  CAS  Google Scholar 

  4. Rebollo A, Martinez CA . Ras proteins: recent advances and new functions. Blood 1999; 94: 2971–2980.

    CAS  PubMed  Google Scholar 

  5. Reuter CWM, Morgan MA, Bergmann L . Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematological malignancies? Blood 2000; 96: 1655–1669.

    CAS  Google Scholar 

  6. Mumby SM . Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol 1997; 9: 148–154.

    Article  CAS  Google Scholar 

  7. Wittinghofer A . Signal transduction via Ras. Biol Chem 1998; 379: 933–937.

    CAS  PubMed  Google Scholar 

  8. Marshall CJ . Ras effectors. Curr Opin Cell Biol 1996; 8: 197–204.

    Article  CAS  Google Scholar 

  9. Katz ME, McCormick F . Signal transduction from multiple Ras effectors. Curr Opin Genet Dev 1997; 7: 75–79.

    Article  CAS  Google Scholar 

  10. Feig LA, Urano T, Cantor S . Evidence for a Ras/Ral signaling cascade. Trends Biochem Sci 1996; 21: 438–441.

    Article  CAS  Google Scholar 

  11. Carpenter CL, Cantley LC . Phosphoinositide kinases. Curr Opin Cell Biol 1996; 8: 153–158.

    Article  CAS  Google Scholar 

  12. Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J, Rapp U . The ins and outs of Raf kinases. Trends Biol Sci 1994; 19: 474–480.

    Article  CAS  Google Scholar 

  13. Zhang FL, Casey PJ . Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65: 241–269.

    Article  CAS  Google Scholar 

  14. Sinensky M . Recent advances in the study of prenylated proteins. Biochim Biophys Acta 2000; 1484: 93–106.

    Article  CAS  Google Scholar 

  15. Omer CA, Kohl NE . CA1A2X-competitive inhibitors of farnesyltransferase as anti-cancer agents. Trends Pharmacol Sci 1997; 18: 437–444.

    Article  CAS  Google Scholar 

  16. Gibbs JB, Oliff A . The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol 1997; 37: 143–166.

    Article  CAS  Google Scholar 

  17. Heimbrook DC, Oliff A . Therapeutic intervention and signaling. Curr Opin Cell Biol 1998; 10: 284–288.

    Article  CAS  Google Scholar 

  18. Crul M, de Klerk GJ, Beijnen JH, Schellens JH . Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anticancer Drugs 2001; 12:163–184.

    Article  CAS  Google Scholar 

  19. Zujewski J, Horak ID, Bol CJ, Woestenborghs R, Bowden C, End DW et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18: 927–941.

    Article  CAS  Google Scholar 

  20. Adjei AA, Erlichman C, Davis JN, Cutler DL, Sloan JA, Marks RS et al. A Phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000; 60: 1871–1877.

    CAS  PubMed  Google Scholar 

  21. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical–laboratory correlative trial. Blood 2001; 97: 3361–3369.

    Article  CAS  Google Scholar 

  22. Karp JE . Farnesyl protein transferase inhibitors as targeted therapies for hematologic malignancies. Semin Hematol 2001; 38: 16–23.

    Article  CAS  Google Scholar 

  23. Nagasu T, Yoshimatsu K, Rowell C, Lewis MD, Garcia AM . Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 1995; 55: 5310–5314.

    CAS  PubMed  Google Scholar 

  24. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM . Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 1997; 15: 1283–1288.

    Article  CAS  Google Scholar 

  25. James G, Goldstein JL, Brown MS . Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc Natl Acad Sci USA 1996;93: 4454–4458.

    Article  CAS  Google Scholar 

  26. Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995; 1: 792–797.

    Article  CAS  Google Scholar 

  27. Mangues R, Corral T, Kohl NE, Symmans WF, Lu S, Malumbres M et al. Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res 1998; 58: 1253–1259.

    CAS  PubMed  Google Scholar 

  28. Omer CA, Chen Z, Diehl RE, Conner MW, Chen HY, Trumbauer ME et al. Mouse mammary tumor virus-Ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res 2000; 60: 2680–2688.

    CAS  PubMed  Google Scholar 

  29. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM . Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 1997; 272: 14093–14097.

    Article  CAS  Google Scholar 

  30. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 1997; 272: 14459–14464.

    Article  CAS  Google Scholar 

  31. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ . Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992; 89: 6403–6407.

    Article  CAS  Google Scholar 

  32. Zhang FL, Kirschmeier P, Carr D, James L, Bond RW, Wang L et al. Characterization of Ha-ras, N-ras, Ki-Ras4A, and Ki-Ras4B as in vitro substrates for farnesyl protein transferase and geranylgeranyl protein transferase type I. J Biol Chem 1997; 272: 10232–10239.

    Article  CAS  Google Scholar 

  33. Mahgoub N, Taylor BR, Gratiot M, Kohl NE, Gibbs JB, Jacks T et al. In vitro and in vivo effects of a farnesyltransferase inhibitor on Nf1-deficient hematopoietic cells. Blood 1999; 94: 2469–2476.

    CAS  Google Scholar 

  34. Sun J, Qian Y, Hamilton AD, Sebti SM . Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 1998; 16: 1467–1473.

    Article  CAS  Google Scholar 

  35. Sun J, Blaskovich MA, Knowles D, Qian Y, Ohkanda J, Bailey RD et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranyl-geranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res 1999; 59: 4919–4926.

    CAS  PubMed  Google Scholar 

  36. Drexler HG, Matsuo AY, MacLeod AF . Continuous hematopoietic cell lines as model systems for leukemia–lymphoma research. Leuk Res 2000; 24: 881–911.

    Article  CAS  Google Scholar 

  37. Reuter C, Auf der Landwehr U, Schleyer E, Zuhlsdorf M, Ameling C, Rolf C et al. Modulation of intracellular metabolism of cytosine arabinoside in acute myeloid leukemia by granulocyte–macrophage colony stimulating factor. Leukemia 1994; 8: 217–225.

    CAS  PubMed  Google Scholar 

  38. Morgan MA, Dolp O, Reuter CW . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 97: 1823–1834.

    Article  CAS  Google Scholar 

  39. Reuter CWM, Catling AD, Weber MJ . Immune complex kinase assays for mitogen-activated protein kinase and MEK. Methods Enzymol 1995; 205: 245–256.

    Article  Google Scholar 

  40. Reuter CWM, Catling AD, Jelinek T, Weber MJ . Biochemical analysis of MEK activation in NIH3T3 fibroblasts. J Biol Chem 1995; 270: 7644–7655.

    Article  CAS  Google Scholar 

  41. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein–dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  Google Scholar 

  42. Taylor JT, Shalloway D . Cell cycle-dependent activation of Ras. Curr Biol 1996; 6: 1621–1627.

    Article  CAS  Google Scholar 

  43. De Rooij J, Bos JL . Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 1997; 14: 623–625.

    Article  CAS  Google Scholar 

  44. Taylor SJ, Resnick RJ, Shalloway D . Nonradioactive determination of Ras-GTP levels using activated ras interaction assay. Methods Enzymol 2001; 333: 333–342.

    Article  CAS  Google Scholar 

  45. Krauter J, Hoellge W, Wattjes MP, Nagel S, Heidenreich O, Bunjes D et al. Detection and quantification of CBFB/MYHII fusion transcripts in patients with inv(16)-positive acute myeloblastic leukemia by real-time RT-PCR. Genes, Chromosomes & Cancer 2001; 30: 342–348.

    Article  CAS  Google Scholar 

  46. Johnson MR, Kangsheng W, Smith JB, Heslin MJ, Diasio RB . Quantitation of dihydropyrimidine dehydrogenase expression by real-time reverse transcription polymerase chain reaction. Anal Biochem 2000; 278: 175–184.

    Article  CAS  Google Scholar 

  47. Chang JT, Chen IH, Liao CT, Wang HM, Hsu YM, Hung KF et al. A reverse transcription comparative real-time PCR method for quantitative detection of angiogenic growth factors in head and neck cancer patients. Clin Biochem 2002; 35: 591–596.

    Article  CAS  Google Scholar 

  48. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  49. Qian Y, Vogt A, Vasudevan A, Sebti SM, Hamilton AD . Selective inhibition of type-I geranylgeranyltransferase in vitro and in whole cells by CAAL peptidomimetics. Bioorg Med Chem 1998; 6: 293–299.

    Article  CAS  Google Scholar 

  50. Tamanoi F, Gau C-L, Jiang C, Edamatsu H, Kato-Stankiewicz J . Protein farnesylation in mammalian cells: effects of farnesyl-transferase inhibitors on cancer cells. Cell Mol Life Sci 2001; 58: 1636–1649.

    Article  CAS  Google Scholar 

  51. Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH . Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res 2000; 6: 2318–2325.

    CAS  PubMed  Google Scholar 

  52. Sinensky M, Fantle K, Dalton M . An antibody which specifically recognizes prelamin A but not mature lamin A: application to detection of blocks in farnesylation-dependent protein processing. Cancer Res 1994; 54: 3229–3232.

    CAS  PubMed  Google Scholar 

  53. Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM . The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 1997; 272: 27224–27229.

    Article  CAS  Google Scholar 

  54. Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM et al. GGTI-298 induces G0–G1 block and apoptosis whereas FTI-277 causes G2–M enrichment in A549 cells. Cancer Res 1997; 57: 1846–1850.

    CAS  PubMed  Google Scholar 

  55. Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 2000; 275: 30451–30457.

    Article  CAS  Google Scholar 

  56. Ashar HR, James L, Gray K, Carr D, McGuirk M, Maxwell E et al. The farnesyl transferase inhibitor SCH 66336 induces a G(2) -> M or G(1) pause in sensitive human tumor cell lines. Exp Cell Res 2001; 262: 17–27.

    Article  CAS  Google Scholar 

  57. Sun J, Qian Y, Hamilton AD, Sebti SM . Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res 1995; 55: 4243–4247.

    CAS  PubMed  Google Scholar 

  58. Lantry LE, Zhang Z, Yao R, Crist KA, Wang Y, Ohkanda J et al. Effect of farnesyltransferase inhibitor FTI-276 on established lung adenomas from A/J mice induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2000; 21: 113–116.

    Article  CAS  Google Scholar 

  59. Prendergast GC . Farnesyltransferase inhibitors: antineoplastic mechanism and clinical prospects. Curr Opin Cell Biol 2000; 12: 166–173.

    Article  CAS  Google Scholar 

  60. Lerner EC, Qian Y, Hamilton AD, Sebti SM . Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor. J Biol Chem 1995; 270: 26770–26773.

    Article  CAS  Google Scholar 

  61. Moodie SA, Willumsen BM, Weber MJ, Wolfman A . Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–1661.

    Article  CAS  Google Scholar 

  62. Jelinek T, Catling AD, Reuter CW, Moodie SA, Wolfman A, Weber MJ . RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol Cell Biol 1994;14: 8212–8218.

    Article  CAS  Google Scholar 

  63. Lerner EC, Qian Y, Blaskovich MA, Fossum RD, Vogt A, Sun J et al. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras–Raf complexes. J Biol Chem 1995; 270: 26802–26806.

    Article  CAS  Google Scholar 

  64. Mazet JL, Padieu M, Osman H, Maume G, Mailliet P, Dereu N et al. Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)–S transition in Ki-Ras-overexpressing transformed adrenocortical cells. FEBS Lett 1999; 460: 235–240.

    Article  CAS  Google Scholar 

  65. Di Paolo A, Danesi R, Caputo S, Macchia M, Lastella M, Boggi U et al. Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells. Br J Cancer 2001; 84: 1535–1543.

    Article  CAS  Google Scholar 

  66. Lobell RB, Omer CA, Abrams MT, Bhimnathwala HG, Brucker MJ, Buser CA et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res 2001; 61: 8758–8768.

    CAS  PubMed  Google Scholar 

  67. Yang W, Tabancay AP, Urano J, Tamanoi F . Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol 2001; 41: 1339–1347.

    Article  CAS  Google Scholar 

  68. Farnsworth CC, Wolda SL, Gelb MH, Glomset JA . Human lamin B contains a farnesylated cysteine residue. J Biol Chem 1989; 264: 20422–20429.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Beck LA, Hosick TJ, Sinensky M . Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol 1990; 110: 1489–1499.

    Article  CAS  Google Scholar 

  70. Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A et al. A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 1995; 55: 5302–5309.

    CAS  Google Scholar 

  71. Kelland LR, Smith V, Valenti M, Patterson L, Clarke PA, Detre S et al. Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res 2001; 7: 3544–3550.

    CAS  PubMed  Google Scholar 

  72. Liu AX, Du W, Liu JP, Jessell TM, Prendergast GC . RhoB alteration is necessary for apoptotic and antineoplastic responses to farnesyltransferase inhibitors. Mol Cell Biol 2000; 20: 6105–6113.

    Article  CAS  Google Scholar 

  73. Du W, Prendergast GC . Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res 1999; 59: 5492–5496.

    CAS  Google Scholar 

  74. Du W, Lebowitz PF, Prendergast GC . Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 1999; 19: 1831–1840.

    Article  CAS  Google Scholar 

  75. Chen Z, Sun J, Pradines A, Favre G, Adnane J, Sebti SM . Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J Biol Chem 2000; 275: 17974–17978.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Natalja Möbius for excellent technical assistance and Dr Kristine A Henningfeld and Dr Thomas Winkler for valuable discussions. We thank Dr Jürgen Krauter and Kerstin Görlich for help with the TaqMan experiments.

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by a grant to CR from the Deutsche Krebshilfe (10-18c1-ReI) and a grant to CR from Hannover Medical School (HILF-program).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, M., Wegner, J., Aydilek, E. et al. Synergistic cytotoxic effects in myeloid leukemia cells upon cotreatment with farnesyltransferase and geranylgeranyl transferase-I inhibitors. Leukemia 17, 1508–1520 (2003). https://doi.org/10.1038/sj.leu.2403022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403022

Keywords

This article is cited by

Search

Quick links