Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Stem Cells

Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia

Abstract

Chronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally and amplify slowly. In contrast, as these cells enter the intermediate stages of lineage restriction, their progeny are selectively expanded and generate an enlarged pool of neoplastic progenitors. Recent analyses of purified subsets of primitive CML cells have provided a coherent explanation for this dichotomous behavior of BCR-ABL-positive stem and progenitor cells based on the discovery of an unusual autocrine IL-3/G-CSF mechanism activated in them. This only partially counteracts in vivosignals that maintain normal stem cells in a quiescent state but, when active in CML stem cells, promotes their differentiation in favor of their self-renewal. In more differentiated CML progenitors, the same mechanism has a more potent mitogenic effect which is then extinguished when the cells enter the terminal stages of differentiation. Thus, further expansion of the clone is limited until inevitably additional mutations are acquired that further distort or override the regulatory mechanisms still operative in the chronic phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Fialkow PJ, Jacobson RJ, Papayannopoulou T . Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage Am J Med 1977 63: 125–130

    CAS  PubMed  Google Scholar 

  2. Groffen J, Stephenson JR, Heisterkamp N, De Klein A, Bartram CR, Grosveld G . Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22 Cell 1984 36: 93–99

    CAS  PubMed  Google Scholar 

  3. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia Nature 1985 315: 550–554

    CAS  PubMed  Google Scholar 

  4. Raskind WH, Fialkow PJ . The use of cell markers in the study of human hematopoietic neoplasia Adv Cancer Res 1987 49: 127–167

    CAS  PubMed  Google Scholar 

  5. Rowley JD . A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining Nature 1973 243: 290–293

    Article  CAS  PubMed  Google Scholar 

  6. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome Science 1990 247: 824–830

    Article  CAS  PubMed  Google Scholar 

  7. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J . Acute leukemia in bcr/abl transgenic mice Nature 1990 344: 251–253

    CAS  PubMed  Google Scholar 

  8. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products Science 1990 247: 1079–1082

    Article  CAS  PubMed  Google Scholar 

  9. Evans CA, Owen-Lynch J, Whetton AD, Dive C . Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells Cancer Res 1993 53: 1735–1738

    CAS  PubMed  Google Scholar 

  10. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB . Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells Nat Med 1996 2: 561–566

    Article  CAS  PubMed  Google Scholar 

  11. Konopka JB, Witte ON . Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products Mol Cell Biol 1985 5: 3116–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Etten RA, Jackson P, Baltimore D . The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization Cell 1989 58: 669–678

    CAS  PubMed  Google Scholar 

  13. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals Blood 1995 86: 3118–3122

    CAS  PubMed  Google Scholar 

  14. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV . The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease Blood 1998 92: 3362–3367

    CAS  PubMed  Google Scholar 

  15. Ichimaru M, Ishimaru T, Mikami M, Yamada Y, Ohkita T . Incidence of leukemia in a fixed cohort of atomic bomb survivors and controls, Hiroshima and Nagasaki October 1950–December 1978 Technical Report RERF TR 13–81 Radiation Effects Research Foundation: Hiroshima 1981

    Google Scholar 

  16. Dameshek W . Some speculations on the myeloproliferative syndromes Blood 1951 6: 372–375

    CAS  PubMed  Google Scholar 

  17. Whang J, Frei E III, Tjio JH, Carbone PP, Brecher G . The distribution of the Philadelphia chromosome in patients with chronic myelogenous leukemia Blood 1963 22: 664–673

    CAS  PubMed  Google Scholar 

  18. Rastrick JM, Fitzgerald PH, Gunz FW . Direct evidence for presence of Ph1 chromosome in erythroid cells Br Med J 1968 1: 96–98

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tough IM, Jacobs PA, Court Brown WM, Baikie AG, Williamson ERD . Cytogenetic studies on bone-marrow in chronic myeloid leukaemia Lancet 1963 1: 844–846

    CAS  PubMed  Google Scholar 

  20. Martin PJ, Najfeld V, Hansen JA, Penfold GK, Jacobson RJ, Fialkow PJ . Involvement of the B-lymphoid system in chronic myelogenous leukaemia Nature 1980 287: 49–50

    CAS  PubMed  Google Scholar 

  21. Bernheim A, Berger R, Preud'Homme JL, Labaume S, Bussel A, Barot-Ciorbaru R . Philadelphia chromosome positive blood B lymphocytes in chronic myelocytic leukemia Leuk Res 1981 5: 331–339

    CAS  PubMed  Google Scholar 

  22. Takahashi N, Miura I, Saitoh K, Miura AB . Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization Blood 1998 92: 4758–4763

    CAS  PubMed  Google Scholar 

  23. Gunsilius E, Duba H-C, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, Gabl C, Dimhofer S, Clausen J, Gastl G . Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells Lancet 2000 355: 1688–1691

    CAS  PubMed  Google Scholar 

  24. Udomsakdi C, Eaves CJ, Swolin B, Reid DS, Barnett MJ, Eaves AC . Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level Proc Natl Acad Sci USA 1992 89: 6192–6196

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Eaves C, Cashman J, Eaves A . Defective regulation of leukemic hematopoiesis in chronic myeloid leukemia Leuk Res 1998 22: 1085–1096

    CAS  PubMed  Google Scholar 

  26. Udomsakdi C, Eaves CJ, Lansdorp PM, Eaves AC . Phenotypic heterogeneity of primitive leukemic hematopoietic cells in patients with chronic myeloid leukemia Blood 1992 80: 2522–2530

    CAS  PubMed  Google Scholar 

  27. Verfaillie CM, Miller WJ, Boylan K, McGlave PB . Selection of benign primitive hematopoietic progenitors in chronic myelogenous leukemia on the basis of HLA-DR antigen expression Blood 1992 79: 1003–1010

    CAS  PubMed  Google Scholar 

  28. Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcorn MJ, Laird C, Eaves AC, Eaves CJ . Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3 Blood 2001 97: 720–728

    CAS  PubMed  Google Scholar 

  29. Srour EF, Brandt JE, Leemhuis T, Ballas CB, Hoffman R . Relationship between cytokine-dependent cell cycle progression and MHC class II antigen expression by human CD34+HLA-DR − bone marrow cells J Immunol 1992 148: 815–820

    CAS  PubMed  Google Scholar 

  30. Levin RH, Whang J, Tjio JH, Carbone PP, Frei E III, Freireich EJ . Persistent mitosis of transfused homologous leukocytes in children receiving antileukemic therapy Science 1963 142: 1305–1311

    CAS  PubMed  Google Scholar 

  31. Graw RGJ, Buckner CD, Whang-Peng J, Leventhal BG, Kruger G, Berard C, Henderson ES . Complication of bone-marrow transplantation. Graft-versus-host disease resulting from chronic-myelogenous-leukaemia leucocyte transfusions Lancet 1970 2: 338–341

    PubMed  Google Scholar 

  32. Deisseroth AB, Zu Z, Claxton D, Hanania EG, Fu S, Ellerson D, Goldberg L, Thomas M, Janicek K, Anderson WF, Hester J, Korbling M, Durett A, Moen R, Berenson R, Heimfeld S, Hamer J, Calvert L, Tibbits P, Talpaz M, Kantarjian H, Champlin R, Reading C . Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML Blood 1994 83: 3068–3076

    CAS  PubMed  Google Scholar 

  33. McGlave PB, De Fabritiis P, Deisseroth A, Goldman J, Barnett M, Reiffers J, Simonsson B, Carella A, Aeppli D . Autologous transplants for chronic myelogenous leukaemia: results from eight transplant groups Lancet 1994 343: 1486–1488

    CAS  PubMed  Google Scholar 

  34. Carella AM, Frassoni F, Melo J, Sawyers C, Eaves C, Eaves A, Apperely J, Tura S, Hehlmann R, Lerma E, Reiffers J, Goldman J . New insights in biology and current therapeutic options for patients with chronic myeloid leukemia Haematologica 1997 82: 478–495

    CAS  PubMed  Google Scholar 

  35. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M, Laraya P, Keating A, Eaves A, Lansdorp PM, Eaves CJ, Dick JE . Normal and leukemic SCID-repopulating cells (SRC) co-exist in the bone marrow and peripheral blood from CML patients in chronic phase while leukemic SRC are detected in blast crisis Blood 1996 87: 1539–1548

    CAS  PubMed  Google Scholar 

  36. Wang JCY, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, Nayar R, Laraya P, Minden M, Keating A, Eaves AC, Eaves CJ, Dick JE . High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase Blood 1998 91: 2406–2414

    CAS  PubMed  Google Scholar 

  37. Lewis ID, McDiarmid LA, Samels LM, Bik To L, Hughes TP . Establishment of a reproducible model of chronic-phase chronic myeloid leukemia in NOD/SCID mice using blood-derived mononuclear or CD34+ cells Blood 1998 91: 630–640

    CAS  PubMed  Google Scholar 

  38. Dazzi F, Capelli D, Hasserjian R, Cotter F, Corbo M, Poletti A, Chinswangwatanakul W, Goldman JM, Gordon MY . The kinetics and extent of engraftment of chronic myelogenous leukemia cells in non-obese diabetic/severe combined immunodeficiency mice reflect the phase of the donor's disease: an in vivo model of chronic myelogenous leukemia biology Blood 1998 92: 1390–1396

    CAS  PubMed  Google Scholar 

  39. Verstegen MMA, Cornelissen JJ, Terpstra W, Wagemaker G, Wognum AW . Multilineage outgrowth of both malignant and normal hemopoietic progenitor cells from individual chronic myeloid leukemia patients in immunodeficient mice Leukemia 1999 13: 618–628

    CAS  PubMed  Google Scholar 

  40. Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI, Reilly J, Carlson JE, Frimberger AE, Stewart FM, Quesenberry PJ . The fluctuating phenotype of the lympho-hematopoietic stem cell with cell cycle transit J Exp Med 1998 188: 393–398

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Glimm H, Oh I, Eaves C . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0 Blood 2000 96: 4185–4193

    CAS  PubMed  Google Scholar 

  42. Cashman JD, Eaves CJ . High marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD/SCID mice Blood 2000 96: 3979–3981

    CAS  PubMed  Google Scholar 

  43. van Hennik PB, de Koning AE, Ploemacher RE . Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment Blood 1999 94: 3055–3061

    CAS  PubMed  Google Scholar 

  44. Gothot A, Van der Loo JCM, Clapp W, Srour EF . Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34+ cells in non-obese diabetic/severe combined immune-deficient mice Blood 1998 92: 2641–2649

    CAS  PubMed  Google Scholar 

  45. Eaves CJ, Eaves AC . Cell culture studies in CML In: Hinton K (ed.) Baillière's Clinical Haematology, 1st edn Bailliere Tindall/WB, Saunders: London 1987 pp 931–961

    Google Scholar 

  46. Fauser AA, Messner HA . Proliferative state of human pluripotent hemopoietic progenitors (CFU-GEMM) in normal individuals and under regenerative conditions after bone marrow transplantation Blood 1979 54: 1197–1200

    CAS  PubMed  Google Scholar 

  47. Ponchio L, Cashman J, Zoumbos N, Eaves CJ, Eaves A . Primitive CML cells show a deregulation of their cycling status both in vivo and in longterm cultures which is not normalized in the presence of interferon-α Blood 1995 86: 493a

    Google Scholar 

  48. Holyoake T, Jiang X, Eaves C, Eaves A . Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia Blood 1999 94: 2056–2064

    CAS  PubMed  Google Scholar 

  49. Cashman JD, Eaves AC, Eaves CJ . Granulocyte–macrophage colony-stimulating factor modulation of the inhibitory effect of transforming growth factor-β on normal and leukemic human hematopoietic progenitor cells Leukemia 1992 6: 886–892

    CAS  PubMed  Google Scholar 

  50. Goto T, Nishikori M, Arlin Z, Gee T, Kempin S, Burchenal J, Strife A, Wisniewski D, Lambek C, Little C, Jhanwar S, Chaganti R, Clarkson B . Growth characteristics of leukemic and normal hematopoietic cells in Ph1+ chronic myelogenous leukemia and effects of intensive treatment Blood 1982 59: 793–808

    CAS  PubMed  Google Scholar 

  51. Kantarjian HM, Vellekoop L, McCredie KB, Keating MJ, Hester J, Smith T, Barlogie B, Trujillo J, Freireich EJ . Intensive combination chemotherapy (ROAP 10) and splenectomy in the management of chronic myelogenous leukemia J Clin Oncol 1985 3: 192–200

    CAS  PubMed  Google Scholar 

  52. Gratwohl A, Hermans J, Niederwieser D, Frassoni F, Arcese W, Gahrton G, Bandini G, Carreras E, Vernant JP, Bosi A, de Witte T, Fibbe WE, Zwaan F, Michallet M, Ruutu T, Devergie A, Iriondo A, Apperley J, Reiffers J, Speck B, Goldman J . Bone marrow transplantation for chronic myeloid leukemia: long-term results Bone Marrow Transplant 1993 12: 509–516

    CAS  PubMed  Google Scholar 

  53. Yong ASM, Goldman JM . Relapse of chronic myeloid leukaemia 14 years after allogeneic bone marrow transplantation Bone Marrow Transplant 1999 23: 827–828

    CAS  PubMed  Google Scholar 

  54. Blackburn EH . Structure and function of telomeres Nature 1991 350: 569–572

    CAS  PubMed  Google Scholar 

  55. Blasco MA, Lee H-W, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW . Telomere shortening and tumor formation by mouse cells lacking telomerase RNA Cell 1997 91: 25–34

    CAS  PubMed  Google Scholar 

  56. Lee H-W, Blasco MA, Gottlieb GJ, Horner JW III, Greider CW, DePinho RA . Essential role of mouse telomerase in highly proliferative organs Nature 1998 392: 569–574

    CAS  PubMed  Google Scholar 

  57. Shay JW, Bacchetti S . A survey of telomerase activity in human cancer Eur J Cancer 1997 33: 787–791

    CAS  PubMed  Google Scholar 

  58. Weng N-P, Hathcock KS, Hodes RJ . Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential Immunity 1998 9: 151–157

    CAS  PubMed  Google Scholar 

  59. Vaziri H, Benchimol S . Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span Curr Biol 1998 8: 279–282

    CAS  PubMed  Google Scholar 

  60. Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE, Shay JW . Absence of cancer-associated changes in human fibroblasts immortalized with telomerase Nat Genet 1999 21: 115–118

    CAS  PubMed  Google Scholar 

  61. Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD, Chiu CP . Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype Nat Genet 1999 21: 111–114

    CAS  PubMed  Google Scholar 

  62. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE . Extension of life-span by introduction of telomerase into normal human cells Science 1998 279: 349–353

    CAS  PubMed  Google Scholar 

  63. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schultzer M, Lansdorp PM . Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood J Exp Med 1999 190: 157–167

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Slagboom PE, Droog S, Boomsma DI . Genetic determination of telomere size in humans: a twin study of three age groups Am J Hum Genet 1994 55: 876–882

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM . Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry Nat Biotechnol 1998 16: 743–747

    CAS  PubMed  Google Scholar 

  66. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MAS . Telomerase activity and telomere length in acute and chronic leukemia, pre and post-ex vivo culture Cancer Res 2000 60: 610–617

    CAS  PubMed  Google Scholar 

  67. Brummendorf TH, Holyoake TL, Rufer N, Barnett MJ, Schulzer M, Eaves CJ, Eaves AC, Lansdorp PM . Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry Blood 2000 95: 1883–1890

    CAS  PubMed  Google Scholar 

  68. Boultwood J, Fidler C, Shepherd P, Watkins F, Snowball J, Haynes S, Kusec R, Gaiger A, Littlewood TJ, Peniket AJ, Wainscoat JS . Telomere length shortening is associated with disease evolution in chronic myelogenous leukemia Am J Hematol 1999 61: 5–9

    CAS  PubMed  Google Scholar 

  69. Boultwood J, Peniket A, Watkins F, Shepherd P, McGale P, Richards S, Fidler C, Littlewood TJ, Wainscoat JS . Telomere length shortening in chronic myelogenous leukemia is associated with reduced time to accelerated phase Blood 2000 96: 358–361

    CAS  PubMed  Google Scholar 

  70. Read M, Harrison RJ, Romagnoli B, Tanious FA, Gowan SH, Reszka AP, Wilson WD, Kelland LR, Neidle S . Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors Proc Natl Acad Sci USA 2001 98: 4844–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL . Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N Engl J Med 2001 344: 1031–1037

    CAS  PubMed  Google Scholar 

  72. Deininger MWN, Goldman JM, Lydon N, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells Blood 1997 90: 3691–3698

    CAS  PubMed  Google Scholar 

  73. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL . Primitive quiescent, Philadelphia positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro Blood 2002 99: 319–325

    CAS  PubMed  Google Scholar 

  74. Gao L, Bellantuono I, Elsässer A, Marley SB, Gordon MY, Goldman JM, Stauss HJ . Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1 Blood 2000 95: 2198–2203

    CAS  PubMed  Google Scholar 

  75. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA . The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells EMBO J 2001 20: 1897–1909

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Campbell JD, Cook G, Holyoake TL . Evolution of bone marrow transplantation – the original immunotherapy Trends Immunol 2001 22: 88–92

    CAS  PubMed  Google Scholar 

  77. Jorgensen HG, Elliott MA, Allan EK, Carr DE, Holyoake TL, Smith KD . Alpha-1 acid glycoprotein expressed in the plasma with chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571 (Glivec) Blood 2002 99: 713–715

    CAS  PubMed  Google Scholar 

  78. Hariharan IK, Adams JM, Cory S . BCR-ABL oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia Oncogene Res 1988 3: 387–399

    CAS  PubMed  Google Scholar 

  79. Sirard C, Laneuville P, Dick J . Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism Blood 1994 83: 1575–1585

    CAS  PubMed  Google Scholar 

  80. Strife A, Lambek C, Wisniewski D, Wachter M, Gulati SC, Clarkson BD . Discordant maturation as the primary biological defect in chronic myelogenous leukemia Cancer Res 1988 48: 1035–1041

    CAS  PubMed  Google Scholar 

  81. Bedi A, Zehnbauer BA, Barber J, Sharkis S, Jones R . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia Blood 1994 83: 2038–2044

    CAS  PubMed  Google Scholar 

  82. Maguer-Satta V, Burl S, Liu L, Damen J, Chahine H, Krystal G, Eaves A, Eaves C . BCR-ABL accelerates C2-ceramide-induced apoptosis Oncogene 1998 16: 237–248

    CAS  PubMed  Google Scholar 

  83. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia Proc Natl Acad Sci USA 1999 96: 12804–12809

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang X, Fujisaki T, Nicolini F, Berger M, Holyoake T, Eisterer W, Eaves C, Eaves A . Autonomous multi-lineage differentiation in vitro of primitive CD34+ cells from patients with chronic myeloid leukemia Leukemia 2000 14: 1112–1121

    CAS  PubMed  Google Scholar 

  85. Ponchio L, Eaves C . Steel factor and Flk-2/Flt-3 ligand alone trigger quiescent human LTC-IC into S-phase more effectively than primitive quiescent clonogenic progenitor cells J Hematother 1995 4: 217

    Google Scholar 

  86. Chang JM, Metcalf D, Lang RA, Gonda TJ, Johnson GR . Nonneoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression Blood 1989 73: 1487–1497

    CAS  PubMed  Google Scholar 

  87. Wong PMC, Chung S, Dunbar CE, Bodine DM, Ruscetti S, Nienhuis AW . Retrovirus-mediated transfer and expression of the interleukin-3 gene in mouse hematopoietic cells result in a myeloproliferative disorder Mol Cell Biol 1989 9: 798–808

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Just U, Katsuno M, Stocking C, Spooncer E, Dexter M . Targeted in vivo infection with a retroviral vector carrying the interleukin-3 (multi-CSF) gene leads to immortalization and leukemic transformation of primitive hematopoietic progenitor cells Growth Factors 1993 9: 41–55

    CAS  PubMed  Google Scholar 

  89. Saito H, Hatake K, Dvorak AM, Lerferman KM, Donvenberg AD, Arai N, Ishizaka K, Ishizaka T . Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins Proc Natl Acad Sci USA 1988 85: 2288–2292

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Metcalf D . Control of granulocytes and macrophages: molecular, cellular, and clinical aspects Science 1991 254: 529–533

    CAS  PubMed  Google Scholar 

  91. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, Barendt J, Platzer E, Moore MAS, Mertelsmann R, Welte K . Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells Science 1986 232: 61–65

    CAS  PubMed  Google Scholar 

  92. Sattler M, Salgia R . Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL Cytokine Growth Factor Rev 1997 8: 63–79

    CAS  PubMed  Google Scholar 

  93. Zhang X, Ren R . BCR-ABL efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte–macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia Blood 1998 92: 3829–3840

    CAS  PubMed  Google Scholar 

  94. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The p190, p210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity J Exp Med 1999 189: 1399–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jiang X, Yip C, Eisterer W, Eaves A, Eaves C . Reduced tyrosine phosphorylation of p210BCR-ABL and lack of STAT5 activation in BCR-ABL-transduced IL-3−/− primitive hematopoietic cells Blood 2000 96: 92a

    Google Scholar 

  96. Anderson SM, Mladenovic J . The BCR-ABL oncogene requires both kinase activity and src-homology 2 domain to induce cytokine secretion Blood 1996 87: 238–244

    CAS  PubMed  Google Scholar 

  97. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA . Interleukin 3 and granulocyte–macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL Blood 2001 97: 1442–1450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TLH is supported by a Leukemia Research Fund (LRF) Senior Lectureship. MWD is supported by a LRF Clinical Training Fellowship. Much of the work of the authors reported was obtained with support from the Sylvia Aitken Trust, the Scottish National Blood Transfusion service, the National Cancer Institute of Canada (with funds from the Terry Fox Run and the Canadian Cancer Society), as well as the Leukemia Research Fund of Canada.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holyoake, T., Jiang, X., Drummond, M. et al. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 16, 549–558 (2002). https://doi.org/10.1038/sj.leu.2402444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402444

Keywords

This article is cited by

Search

Quick links