Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Review

Kinases: positive and negative regulators of apoptosis

Abstract

Cells sense and respond to extracellular factors via receptors on the cell surface that trigger intracellular signaling pathways. The signals received by the receptors on hematopoietic cells often determine if the cell proliferates, survives or undergoes apoptosis. Apoptosis can be induced by almost any cytotoxic stimuli. These stimuli may be an absence of signals arising from cellular receptors, stimulation of specific ligand receptors on the cell surface, chemotherapeutic agents, and ionizing radiation or oxygen radicals, as well as a number of other factors. Cellular kinases and phosphatases participate in signaling cascades that influence this process. We review the ability of the calmodulin-dependent-kinases, I-κB kinases, PI3-kinases, Jak-kinases, PKC, PKA, and MAP kinase signaling pathways (Erk, Jnk, and p38), to influence the apoptotic process. In addition, we discuss the cross-talk that exists between signaling cascades that are pro-apoptotic and anti-apoptotic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Schwartzman RA, Cidlowski JA . Apoptosis: the biochemistry and molecular biology of programmed cell death Endocr Rev 1993 14: 133–151

    CAS  PubMed  Google Scholar 

  2. Fadok VA, Voelker DR, Campbell PA, Bratton DL, Cohen JJ, Noble PW, Riches DW, Henson PM . The ability to recognize phosphatidylserine on apoptotic cells is an inducible function in murine bone marrow-derived macrophages Chest 1993 103: 102S

    CAS  PubMed  Google Scholar 

  3. Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, Henson PM . Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells J Immunol 1992 149: 4029–4035

    CAS  PubMed  Google Scholar 

  4. Blagosklonny MV . Cell death beyond apoptosis Leukemia 2000 14: 1502–1508

    CAS  PubMed  Google Scholar 

  5. Allen RT, Cluck MW, Agrawal DK . Mechanisms controlling cellular suicide: role of Bcl-2 and caspases Cell Mol Life Sci 1998 54: 427–445

    CAS  PubMed  Google Scholar 

  6. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998 281: 1322–1326

    CAS  PubMed  Google Scholar 

  7. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death Cell 1993 74: 609–619

    CAS  PubMed  Google Scholar 

  8. Korsmeyer SJ . BCL-2 gene family and the regulation of programmed cell death Cancer Res 1999 59: 1693s–1700s

    CAS  PubMed  Google Scholar 

  9. Nouraini S, Six E, Matsuyama S, Krajewski S, Reed JC . The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-X(L) Mol Cell Biol 2000 20: 1604–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G . Mitochondrial membrane permeabilization during the apoptotic process Ann NY Acad Sci 1999 887: 18–30

    CAS  PubMed  Google Scholar 

  11. Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G . Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator Oncogene 2000 19: 329–336

    CAS  PubMed  Google Scholar 

  12. Green DR, Reed JC . Mitochondria and apoptosis Science 1998 281: 1309–1312

    CAS  PubMed  Google Scholar 

  13. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A . The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling J Cell Biol 1998 140: 1485–95

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimizu S, Narita M, Tsujimoto Y . Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC Nature 1999 399: 483–487

    CAS  PubMed  Google Scholar 

  15. Hengartner M . Apoptosis. Death by crowd control Science 1998 281: 1298–1299

    CAS  PubMed  Google Scholar 

  16. Hengartner MO . Apoptosis. Death cycle and Swiss army knives Nature 1998 391: 441–442

    CAS  PubMed  Google Scholar 

  17. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation Science 1998 281: 1305–1308

    CAS  PubMed  Google Scholar 

  18. Pan G, O'Rourke K, Dixit VM . Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex J Biol Chem 1998 273: 5841–5845

    CAS  PubMed  Google Scholar 

  19. Kelekar A, Thompson CB . Bcl-2-family proteins: the role of the BH3 domain in apoptosis Trends Cell Biol 1998 8: 324–330

    CAS  PubMed  Google Scholar 

  20. Haraguchi M, Torii S, Matsuzawa S, Xie Z, Kitada S, Krajewski S, Yoshida H, Mak TW, Reed JC . Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2 J Exp Med 2000 191: 1709–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stoetzer OJ, Pogrebniak A, Scholz M, Pelka-Fleischer R, Gullis E, Darsow M, Nussler V, Wilmanns W . Drug-induced apoptosis in chronic lymphocytic leukemia Leukemia 1999 13: 1873–1880

    CAS  PubMed  Google Scholar 

  22. Konopleva M, Zhao S, Xie Z, Segall H, Younes A, Claxton DF, Estrov Z, Kornblau SM, Andreeff M . Apoptosis. Molecules and mechanisms Adv Exp Med Biol 1999 457: 217–236

    CAS  PubMed  Google Scholar 

  23. Rosen A, Casciola-Rosen L . Macromolecular substrates for the ICE-like proteases during apoptosis J Cell Biochem 1997 64: 50–54

    CAS  PubMed  Google Scholar 

  24. Walter BN, Huang Z, Jakobi R, Tuazon PT, Alnemri ES, Litwack G, Traugh JA . Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity J Biol Chem 1998 273: 28733–28739

    CAS  PubMed  Google Scholar 

  25. Rudel T, Bokoch GM . Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2 Science 1997 276: 1571–1574

    CAS  PubMed  Google Scholar 

  26. Nagata S . Apoptotic DNA fragmentation Exp Cell Res 2000 256: 12–18

    CAS  PubMed  Google Scholar 

  27. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM . Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages J Immunol 1992 148: 2207–2216

    CAS  PubMed  Google Scholar 

  28. Arends MJ, Wyllie AH . Apoptosis: mechanisms and roles in pathology Int Rev Exp Pathol 1991 32: 223–254

    CAS  PubMed  Google Scholar 

  29. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors Curr Opin Cell Biol 1999 11: 255–260

    CAS  PubMed  Google Scholar 

  30. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction Leukemia 2000 14: 9–21

    CAS  PubMed  Google Scholar 

  31. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA . Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs Leukemia 1999 13: 1109–1166

    CAS  PubMed  Google Scholar 

  32. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M, Cherwinski H, Bosch E, McMahon M, McCubrey JA . Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism Leukemia 2000 14: 642–656

    CAS  PubMed  Google Scholar 

  33. Zhuang S, Demirs JT, Kochevar IE . p38 mitogen-activated protein kinase mediates Bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen, but not by hydrogen peroxide J Biol Chem 2000 275: 25939–25948

    CAS  PubMed  Google Scholar 

  34. Lee JE, Sohn J, Lee JH, Lee KC, Son CS, Tockgo YC . Regulation of bcl-2 family in hydrogen peroxide-induced apoptosis in human leukemia HL-60 cells Exp Mol Med 2000 32: 42–46

    CAS  PubMed  Google Scholar 

  35. Mantymaa P, Guttorm T, Siitonen T, Saily M, Savolainen ER, Levonen AL, Kinnula V, Koistinen P . Cellular redox state and its relationship to the inhibition of clonal cell growth and the induction of apoptosis during all-trans retinoic acid exposure in acute myeloblastic leukemia cells Haematologica 2000 85: 238–245

    CAS  PubMed  Google Scholar 

  36. Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM . Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2 J Biol Chem 1997 272: 30615–30618

    CAS  PubMed  Google Scholar 

  37. Kyriakis J, Avruch J . Protein kinase cascades activated by stress and inflammatory cytokines Bioessays 1996 18: 567–577

    CAS  PubMed  Google Scholar 

  38. Maulik N, Sasaki H, Galang N . Differential regulation of apoptosis by ischemia-reperfusion and ischemic adaptation Ann NY Acad Sci 1999 874: 401–411

    CAS  PubMed  Google Scholar 

  39. Sommer D, Fakata KL, Swanson SA, Stemmer PM . Modulation of the phosphatase activity of calcineurin by oxidants and antioxidants in vitro Eur J Biochem 2000 267: 2312–2322

    CAS  PubMed  Google Scholar 

  40. Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB . Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B J Biol Chem 1999 274: 34543–34546

    CAS  PubMed  Google Scholar 

  41. Imbert V, Peyron JF, Farahi Far D, Mari B, Auberger P, Rossi B . Induction of tyrosine phosphorylation and T-cell activation by vanadate peroxide, an inhibitor of protein tyrosine phosphatases Biochem J 1994 297: 163–173

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ullrich A, Schlessinger J . Signal transduction by receptors with tyrosine kinase activity Cell 1990 61: 203–212

    CAS  PubMed  Google Scholar 

  43. Schlessinger J, Ullrich A . Growth factor signaling by receptor tyrosine kinases Neuron 1992 9: 383–391

    CAS  PubMed  Google Scholar 

  44. Franklin R, Tordai A, Patel H, Gardner A, Johnson G, Gelfand E . Ligation of the T cell receptor complex results in activation of the Ras/Raf-1/MEK/MAPK cascade in human T lymphocytes J Clin Invest 1994 93: 2134–2140

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tordai A, Franklin R, Patel H, Gardner A, Johnson G, Gelfand E . Cross-linking of surface IgM stimulates the Ras/Raf-1/MEK/MAPK cascade in human B lymphocytes J Biol Chem 1994 269: 7538–7543

    CAS  PubMed  Google Scholar 

  46. Franklin R, Tordai A, Mazer B, Terada N, Lucas J, Gelfand E . Activation of MAP2-kinase in B lymphocytes by calcium ionophores J Immunol 1994 153: 4890–4898

    CAS  PubMed  Google Scholar 

  47. Nakamura K, Martinez R, Weber M . Tyrosine phosphorylation of specific proteins after mitogen stimulation of chicken embryo fibroblasts Mol Cell Biol 1983 3: 380–390

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooper J, Sefton B, Hunter T . Diverse mitogenic agents induce the phosphorylation of two related 42 000-dalton proteins on tyrosine in quiescent chick cells Mol Cell Biol 1984 4: 30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cooper J, Hunter T . Major substrate for growth factor-activated protein-tyrosine kinases is a low-abundance protein Mol Cell Biol 1985 5: 3304–3309

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Graves J, Campbell J, Krebs E . Protein serine/threonine kinases of the MAPK cascade Ann NY Acad Sci 1995 766: 320–343

    CAS  PubMed  Google Scholar 

  51. Robbins D, Zhen E, Cheng M, Xu S, Ebert D, Cobb M . MAP kinases ERK1 and ERK2: pleiotropic enzymes in a ubiquitous signaling network Adv Cancer Res 1994 63: 93–116

    CAS  PubMed  Google Scholar 

  52. Cobb M, Hepler J, Cheng M, Robbins D . The mitogen-activated protein kinases, ERK1 and ERK2 Semin Cancer Biol 1994 5: 261–268

    CAS  PubMed  Google Scholar 

  53. Cobb M, Goldsmith E . How MAP kinases are regulated J Biol Chem 1995 270: 14843–14846

    CAS  PubMed  Google Scholar 

  54. Cano E, Mahadevan L . Parallel signal processing among mammalian MAPKs Trends Biochem Sci 1995 20: 117–122

    CAS  PubMed  Google Scholar 

  55. Davis R . MAPKs: new JNK expands the group Trends Biochem Sci 1994 19: 470–473

    CAS  PubMed  Google Scholar 

  56. Crews C, Alessandrini A, Erikson R . The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product Science 1992 258: 478–480

    CAS  PubMed  Google Scholar 

  57. Crews C, Erikson R . Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product Proc Natl Acad Sci USA 1992 89: 8205–8209

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Crews C, Erikson R . Extracellular signals and reversible protein phosphorylation: what to Mek of it all Cell 1993 74: 215–217

    CAS  PubMed  Google Scholar 

  59. Payne D, Rossomando A, Martino P, Erickson A, Her J, Shabanowitz J, Hunt D, Weber M, Sturgill T . Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase) EMBO J 1991 10: 885–892

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pelech S, Sanghera J . Mitogen-activated protein kinases: versatile transducers for cell signaling Trends Biochem Sci 1992 17: 233–238

    CAS  PubMed  Google Scholar 

  61. Roovers K, Assoian RK . Integrating the MAP kinase signal into the G1 phase cell cycle machinery Bioessays 2000 22: 818–826

    CAS  PubMed  Google Scholar 

  62. Gardner A, Vaillancourt R, Lange-Carter C, Johnson G . MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity Mol Biol Cell 1994 5: 193–201

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lange-Carter C, Pleiman C, Gardner A, Blumer K, Johnson G . A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf Science 1993 260: 315–319

    CAS  PubMed  Google Scholar 

  64. Guan K . The mitogen activated protein kinase signal transduction pathway: from the cell surface to the nucleus Cell Signal 1994 6: 581–589

    CAS  PubMed  Google Scholar 

  65. Cobb M, Xu S, Hepler J, Hutchison M, Frost J, Robbins D . Regulation of the MAP kinase cascade Cell Mol Biol Res 1994 40: 253–256

    CAS  PubMed  Google Scholar 

  66. Brunet A, Brondello J, L'Allemain G, Lenormand P, McKenzie F, Pages G, Pouyssegur J . MAP kinase module: role in the control of cell proliferation CR Seances Soc Biol Fil 1995 189: 43–57

    CAS  Google Scholar 

  67. Howe L, Leevers S, Gomez N, Nakielny S, Cohen P, Marshall C . Activation of the MAP kinase pathway by the protein kinase raf Cell 1992 71: 335–342

    CAS  PubMed  Google Scholar 

  68. Vojtek A, Hollenberg S, Cooper J . Mammalian Ras interacts directly with the serine/threonine kinase Raf Cell 1993 74: 205–214

    CAS  PubMed  Google Scholar 

  69. Van AL, Barr M, Marcus S, Polverino A, Wigler M . Complex formation between RAS and RAF and other protein kinases Proc Natl Acad Sci USA 1993 90: 6213–6217

    Google Scholar 

  70. Lange-Carter C, Johnson G . Ras-dependent growth factor regulation of MEK kinase in PC12 cells Science 1994 265: 1458–1461

    CAS  PubMed  Google Scholar 

  71. Burgering B, de Vries-Smits AM, Medema R, van Weeren PC, Tertoolen L, Bos J . Epidermal growth factor induces phosphorylation of extracellular signal-regulated kinase 2 via multiple pathways Mol Cell Biol 1993 13: 7248–7256

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Graves L, Bornfeldt K, Sidhu J, Argast G, Raines E, Ross R, Leslie C, Krebs E . Platelet-derived growth factor stimulates protein kinase A through a mitogen-activated protein kinase-dependent pathway in human arterial smooth muscle cells J Biol Chem 1996 271: 505–511

    CAS  PubMed  Google Scholar 

  73. Seger R, Biener Y, Feinstein R, Hanoch T, Gazit A, Zick Y . Differential activation of mitogen-activated protein kinase and S6 kinase signaling pathways by 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin. Evidence for involvement of a TPA-stimulated protein-tyrosine kinase J Biol Chem 1995 270: 28325–28330

    CAS  PubMed  Google Scholar 

  74. Gardner A, Vaillancourt R, Johnson G . Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase by G protein and tyrosine kinase oncoproteins J Biol Chem 1993 268: 17896–17901

    CAS  PubMed  Google Scholar 

  75. Johnson G, Gardner A, Lange-Carter C, Qian N, Russell M, Winitz S . How does the G protein, Gi2, transduce mitogenic signals? J Cell Biochem 1994 54: 415–422

    CAS  PubMed  Google Scholar 

  76. Kavelaars A, Broeke D, Jeurissen F, Kardux J, Meijer A, Franklin R, Gelfand E, Heijnen C . Activation of human monocytes via a non-neurokinin substance P receptor that is coupled to Gi protein, calcium, phospholipase D, MAP kinase, and IL-6 production J Immunol 1994 153: 3691–3699

    CAS  PubMed  Google Scholar 

  77. Melamed I, Franklin RA, Gelfand EW . Microfilament assembly is required for anti-IgM dependent MAPK and p90rsk activation in human B lymphocytes Biochem Biophys Res Commun 1995 209: 1102–1110

    CAS  PubMed  Google Scholar 

  78. Kribben A, Wieder E, Li X, van Putten V, Granot Y, Schrier R, Nemenoff R . AVP-induced activation of MAP kinase in vascular smooth muscle cells is mediated through protein kinase C Am J Physiol 1993 265: C939–945

    CAS  PubMed  Google Scholar 

  79. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio J, Plowman G, Rudy B, Schlessinger J . Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions Nature 1995 376: 737–745

    CAS  PubMed  Google Scholar 

  80. Rosen L, Ginty D, Weber M, Greenberg M . Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras Neuron 1994 12: 1207–1221

    CAS  PubMed  Google Scholar 

  81. Frey R, Mulder K . Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor beta in the negative growth control of breast cancer cells Cancer Res 1997 57: 628–633

    CAS  PubMed  Google Scholar 

  82. Chao T, Byron K, Lee K, Villereal M, Rosner M . Activation of MAP kinases by calcium-dependent and calcium-independent pathways. Stimulation by thapsigargin and epidermal growth factor J Biol Chem 1992 267: 19876–19883

    CAS  PubMed  Google Scholar 

  83. Cuadrado A, Bruder JT, Heidaran MA, App H, Rapp UR, Aaronson SA . H-ras and raf-1 cooperate in transformation of NIH3T3 fibroblasts Oncogene 1993 8: 2443–2448

    CAS  PubMed  Google Scholar 

  84. Saez R, Chan AM, Miki T, Aaronson SA . Oncogenic activation of human R-ras by point mutations analogous to those of prototype H-ras oncogenes Oncogene 1994 9: 2977–2982

    CAS  PubMed  Google Scholar 

  85. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . Understanding Ras: ‘it ain't over ‘til it's over’ Trends Cell Biol 2000 10: 147–154

    CAS  PubMed  Google Scholar 

  86. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ . Increasing complexity of Ras signaling Oncogene 1998 17: 1395–1413

    CAS  PubMed  Google Scholar 

  87. Vojtek AB, Der CJ . Increasing complexity of the Ras signaling pathway J Biol Chem 1998 273: 19925–19928

    CAS  PubMed  Google Scholar 

  88. Gire V, Marshall C, Wynford-Thomas D . PI-3-kinase is an essential anti-apoptotic effector in the proliferative response of primary human epithelial cells to mutant RAS Oncogene 2000 19: 2269–2276

    CAS  PubMed  Google Scholar 

  89. Bosch E, Cherwinski H, Peterson D, McMahon M . Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1 Oncogene 1997 15: 1021–1033

    CAS  PubMed  Google Scholar 

  90. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA, Cherwinski H, Bosch E, McMahon M . Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells Leukemia 1998 12: 1903–1929

    CAS  PubMed  Google Scholar 

  91. McCubrey J, Holland G, McKearn J, Risser R . Abrogation of factor-dependence in two IL-3-dependent cell lines can occur by two distinct mechanisms Oncogene Res 1989 4: 97–109

    CAS  PubMed  Google Scholar 

  92. McGlynn AP, Padua RA, Burnett AK, Darley RL . Alternative effects of RAS and RAF oncogenes on the proliferation and apoptosis of factor-dependent FDC-P1 cells Leuk Res 2000 24: 47–54

    CAS  PubMed  Google Scholar 

  93. Sohur US, Dixit MN, Chen CL, Byrom MW, Kerr LA . Rel/NF-kappaB represses bcl-2 transcription in pro-B lymphocytes Gene Expr 1999 8: 219–229

    CAS  PubMed  Google Scholar 

  94. McCubrey JA, Steelman LS, Moye PW, Hoyle PE, Weinstein-Oppenheimer C, Chang F, Pearce M, White MK, Franklin R, Blalock WL . Effects of deregulated RAF and MEK1 expression on the cytokine-dependency of hematopoietic cells Adv Enzyme Regul 2000 40: 305–337

    CAS  PubMed  Google Scholar 

  95. Moye PW, Blalock WL, Hoyle PE, Chang F, Franklin RA, Weinstein-Oppenheimer C, Pearce M, Steelman L, McMahon M, McCubrey JA . Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells Leukemia 2000 14: 1060–1079

    CAS  PubMed  Google Scholar 

  96. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1 Mol Cell Biol 1997 17: 5598–6611

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang HG, Reed JC . Bc1–2, Raf-1 and mitochondrial regulation of apoptosis Biofactors 1998 8: 13–16

    CAS  PubMed  Google Scholar 

  98. Fang X, Yu S, Eder A, Mao M, Bast RC Jr ., Boyd D, Mills GB. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway Oncogene 1999 18: 6635–6640

    CAS  PubMed  Google Scholar 

  99. Yuryev A, Ono M, Goff SA, Macaluso F, Wennogle LP . Isoform-specific localization of A-RAF in mitochondria Mol Cell Biol 2000 20: 4870–4878

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang HG, Rapp UR, Reed JC . Bcl-2 targets the protein kinase Raf-1 to mitochondria Cell 1996 87: 629–638

    CAS  PubMed  Google Scholar 

  101. Erhardt P, Schremser EJ, Cooper GM . B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway Mol Cell Biol 1999 19: 5308–5315

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H, McMahon M, McCubrey JA . A conditionally-active form of MEK1 results in autocrine tranformation of human and mouse hematopoietic cells Oncogene 2000 19: 526–536

    CAS  PubMed  Google Scholar 

  103. Scheid MP, Schubert KM, Duronio V . Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase J Biol Chem 1999 274: 31108–31113

    CAS  PubMed  Google Scholar 

  104. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms Science 1999 286: 1358–1362

    CAS  PubMed  Google Scholar 

  105. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M . CREB and its associated proteins act as survival factors for human melanoma cells J Biol Chem 1998 273: 24884–24890

    CAS  PubMed  Google Scholar 

  106. Tan Y, Ruan H, Demeter MR, Comb MJ . p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway J Biol Chem 1999 274: 34859–34867

    CAS  PubMed  Google Scholar 

  107. Lizcano JM, Morrice N, Cohen P . Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155 Biochem J 2000 349: 547–557

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Karmann K, Min W, Fanslow W, Pober J . Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor necrosis factor, and interleukin 1 J Exp Med 1996 184: 173–182

    CAS  PubMed  Google Scholar 

  109. Derijard B, Hibi M, Wu I, Barrett T, Su B, Deng T, Karin M, Davis R . JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain Cell 1994 76: 1025–1037

    CAS  PubMed  Google Scholar 

  110. Han J, Lee J, Bibbs L, Ulevitch R . A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells Science 1994 265: 808–811

    CAS  PubMed  Google Scholar 

  111. Galcheva-Gargova Z, Derijard B, Wu I, Davis R . An osmosensing signal transduction pathway in mammalian cells Science 1994 265: 806–808

    CAS  PubMed  Google Scholar 

  112. Kyriakis J, Banerjee P, Nikolakaki E, Dai T, Rubie E, Ahmad M, Avruch J, Woodgett J . The stress-activated protein kinase subfamily of c-Jun kinases Nature 1994 369: 156–160

    CAS  PubMed  Google Scholar 

  113. Kyriakis J, Woodgett J, Avruch J . The stress-activated protein kinases. A novel ERK subfamily responsive to cellular stress and inflammatory cytokines Ann NY Acad Sci 1995 766: 303–319

    CAS  PubMed  Google Scholar 

  114. Meier R, Rouse J, Cuenda A, Nebreda A, Cohen P . Cellular stresses and cytokines activate multiple mitogen-activated-protein kinase kinase homologues in PC12 and KB cells Eur J Biochem 1996 236: 796–805

    CAS  PubMed  Google Scholar 

  115. Adler V, Schaffer A, Kim J, Dolan L, Ronai Z . UV irradiation and heat shock mediate JNK activation via alternate pathways J Biol Chem 1995 270: 26071–26077

    CAS  PubMed  Google Scholar 

  116. Lo Y, Wong J, Cruz T . Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases J Biol Chem 1996 271: 15703–15707

    CAS  PubMed  Google Scholar 

  117. Xia Z, Dickens M, Raingeaud J, Davis R, Greenberg M . Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis Science 1995 270: 1326–1331

    CAS  PubMed  Google Scholar 

  118. Lin A, Minden A, Martinetto H, Claret F, Lange-Carter C, Mercurio F, Johnson G, Karin M . Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2 Science 1995 268: 286–290

    CAS  PubMed  Google Scholar 

  119. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis R, Johnson G, Karin M . Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK Science 1994 266: 1719–1723

    CAS  PubMed  Google Scholar 

  120. Xu S, Robbins D, Frost J, Dang A, Lange-Carter C, Cobb M . MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase Proc Natl Acad Sci USA 1995 92: 6808–6812

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang HG, Millan JA, Cox AD, Der CJ, Rapp UR, Beck T, Zha H, Reed JC . R-Ras promotes apoptosis caused by growth factor deprivation via a Bcl-2 suppressible mechanism J Cell Biol 1995 129: 1103–1114

    CAS  PubMed  Google Scholar 

  122. Gallagher AP, Burnett AK, Bowen DT, Darley RL . Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process Cancer Res 1998 58: 2029–2035

    CAS  PubMed  Google Scholar 

  123. Trent JC 2nd, McConkey DJ, Loughlin SM, Harbison MT, Fernandez A, Ananthaswamy HN . Ras signaling in tumor necrosis factor-induced apoptosis EMBO J 1996 15: 4497–4505

    PubMed  PubMed Central  Google Scholar 

  124. Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E . A dual function for p38 MAP kinase in hematopoietic cells: involvement in apoptosis and cell activation Leukemia 1999 13: 1037–1045

    CAS  PubMed  Google Scholar 

  125. Boldin MP, Goncharov TM, Goltsev YV, Wallach D . Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death Cell 1996 85: 803–815

    CAS  PubMed  Google Scholar 

  126. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM . FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex Cell 1996 85: 817–827

    CAS  PubMed  Google Scholar 

  127. Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM . The regulation of anoikis: MEKK-1 activation requires cleavage by caspases Cell 1997 90: 315–323

    CAS  PubMed  Google Scholar 

  128. Widmann C, Johnson NL, Gardner AM, Smith RJ, Johnson GL . Potentiation of apoptosis by low dose stress stimuli in cells expressing activated MEK kinase 1 Oncogene 1997 15: 2439–2447

    CAS  PubMed  Google Scholar 

  129. Chen YR, Meyer CF, Ahmed B, Yao Z, Tan TH . Caspase-mediated cleavage and functional changes of hematopoietic progenitor kinase 1 (HPK1) Oncogene 1999 18: 7370–7377

    CAS  PubMed  Google Scholar 

  130. Low W, Smith A, Ashworth A, Collins M . JNK activation is not required for Fas-mediated apoptosis Oncogene 1999 18: 3737–3741

    CAS  PubMed  Google Scholar 

  131. Chuang TH, Hahn KM, Lee JD, Danley DE, Bokoch GM . The small GTPase Cdc42 initiates an apoptotic signaling pathway in Jurkat T lymphocytes Mol Biol Cell 1997 8: 1687–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  132. May MJ, Ghosh S . Signal transduction through NF-kappa B Immunol Today 1998 19: 80–88

    CAS  PubMed  Google Scholar 

  133. Baeuerle P, Henkel T . Function and activation of NF-kappa B in the immune system Annu Rev Immunol 1994 12: 141–179

    CAS  PubMed  Google Scholar 

  134. May MJ, Ghosh S . Rel/NF-kappa B and I kappa B proteins: an overview Semin Cancer Biol 1997 8: 63–73

    CAS  PubMed  Google Scholar 

  135. Karin M . How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex Oncogene 1999 18: 6867–6874

    CAS  PubMed  Google Scholar 

  136. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-kappaB activity Annu Rev Immunol 2000 18: 621–663

    CAS  PubMed  Google Scholar 

  137. Baldwin AS Jr . The NF-kappa B and I kappa B proteins: new discoveries and insights Annu Rev Immunol 1996 14: 649–683

    PubMed  Google Scholar 

  138. Karin M, Delhase M . The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling Semin Immunol 2000 12: 85–98

    CAS  PubMed  Google Scholar 

  139. Beg AA, Baldwin AS Jr . Activation of multiple NF-kappa B/Rel DNA-binding complexes by tumor necrosis factor Oncogene 1994 9: 1487–1492

    CAS  PubMed  Google Scholar 

  140. Beg AA, Finco TS, Nantermet PV, Baldwin AS Jr . Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation Mol Cell Biol 1993 13: 3301–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bessho R, Matsubara K, Kubota M, Kuwakado K, Hirota H, Wakazono Y, Lin YW, Okuda A, Kawai M, Nishikomori R et al. Pyrrolidine dithiocarbamate, a potent inhibitor of nuclear factor kappa B (NF-kappa B) activation, prevents apoptosis in human promyelocytic leukemia HL-60 cells and thymocytes Biochem Pharmacol 1994 48: 1883–1889

    CAS  PubMed  Google Scholar 

  142. Beg AA, Baltimore D . An essential role for NF-kappaB in preventing TNF-alpha-induced cell death Science 1996 274: 782–784

    CAS  PubMed  Google Scholar 

  143. Wang CY, Mayo MW, Baldwin AS Jr . TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB Science 1996 274: 784–787

    CAS  PubMed  Google Scholar 

  144. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . Suppression of TNF-alpha-induced apoptosis by NF-kappaB Science 1996 274: 787–789

    CAS  PubMed  Google Scholar 

  145. Liu ZG, Hsu H, Goeddel DV, Karin M . Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death Cell 1996 87: 565–576

    CAS  PubMed  Google Scholar 

  146. Beauparlant P, Kwan I, Bitar R, Chou P, Koromilas AE, Sonenberg N, Hiscott J . Disruption of I kappa B alpha regulation byantisense RNA expression leads to malignant transformation Oncogene 1994 9: 3189–3197

    CAS  PubMed  Google Scholar 

  147. Arsura M, Wu M, Sonenshein GE . TGF beta 1 inhibits NF-kappa B/Rel activity inducing apoptosis of B cells: transcriptional activation of I kappa B alpha Immunity 1996 5: 31–40

    CAS  PubMed  Google Scholar 

  148. Kasibhatla S, Genestier L, Green DR . Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB J Biol Chem 1999 274: 987–992

    CAS  PubMed  Google Scholar 

  149. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR . DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1 Mol Cell 1998 1: 543–551

    CAS  PubMed  Google Scholar 

  150. Matsui K, Fine A, Zhu B, Marshak-Rothstein A, Ju ST . Identification of two NF-kappa B sites in mouse CD95 ligand (Fas ligand) promoter: functional analysis in T cell hybridoma J Immunol 1998 161: 3469–3473

    CAS  PubMed  Google Scholar 

  151. Teixeiro E, Garcia-Sahuquillo A, Alarcon B, Bragado R . Apoptosis-resistant T cells have a deficiency in NF-kappaB-mediated induction of Fas ligand transcription Eur J Immunol 1999 29: 745–754

    CAS  PubMed  Google Scholar 

  152. Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD . An essential role for NF-kappaB in human CD34(+) bone marrow cell survival Blood 1999 93: 3302–3308

    CAS  PubMed  Google Scholar 

  153. Romano MF, Lamberti A, Bisogni R, Garbi C, Pagnano AM, Auletta P, Tassone P, Turco MC, Venuta S . Amifostine inhibits hematopoietic progenitor cell apoptosis by activating NF-kappaB/Rel transcription factors Blood 1999 94: 4060–4066

    CAS  PubMed  Google Scholar 

  154. Georgescu MM, Kirsch KH, Shishido T, Zong C, Hanafusa H . Biological effects of c-Mer receptor tyrosine kinase in hematopoietic cells depend on the Grb2 binding site in the receptor and activation of NF-kappaB Mol Cell Biol 1999 19: 1171–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Besancon F, Atfi A, Gespach C, Cayre YE, Bourgeade MF . Evidence for a role of NF-kappaB in the survival of hematopoietic cells mediated by interleukin 3 and the oncogenic TEL/platelet-derived growth factor receptor beta fusion protein Proc Natl Acad Sci USA 1998 95: 8081–8086

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr . A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation Genes Dev 1998 12: 968–981

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Norris JL, Baldwin AS Jr . Oncogenic Ras enhances NF-kappaB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways J Biol Chem 1999 274: 13841–13846

    CAS  PubMed  Google Scholar 

  158. Chen C, Edelstein LC, Gelinas C . The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L) Mol Cell Biol 2000 20: 2687–2695

    PubMed  PubMed Central  Google Scholar 

  159. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C . The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis Genes Dev 1999 13: 382–387

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G . NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes Proc Natl Acad Sci USA 1999 96: 9136–9141

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang CY, Guttridge DC, Mayo MW, Baldwin AS Jr . NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis Mol Cell Biol 1999 19: 5923–5929

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW . Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB Mol Cell Biol 2000 20: 1626–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hirano M, Osada S, Aoki T, Hirai S, Hosaka M, Inoue J, Ohno S . MEK kinase is involved in tumor necrosis factor alpha-induced NF-kappaB activation and degradation of IkappaB-alpha J Biol Chem 1996 271: 13234–13238

    CAS  PubMed  Google Scholar 

  164. Hu MC, Wang Y, Qiu WR, Mikhail A, Meyer CF, Tan TH . Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IkappaB kinases (IKK-alpha/beta) and IKK-beta is a developmentally regulated protein kinase Oncogene 1999 18: 5514–5524

    CAS  PubMed  Google Scholar 

  165. Meyer C, Wang X, Chang C, Templeton D, Tan T . Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating kappaB enhancer activation J Biol Chem 1996 271: 8971–8976

    CAS  PubMed  Google Scholar 

  166. Ihle JN, Thierfelder W, Teglund S, Stravapodis D, Wang D, Feng J, Parganas E . Signaling by the cytokine receptor superfamily Ann NY Acad Sci 1998 865: 1–9

    CAS  PubMed  Google Scholar 

  167. Ihle JN, Stravapodis D, Parganas E, Thierfelder W, Feng J, Wang D, Teglund S . The roles of Jaks and Stats in cytokine signaling Cancer J Sci Am 1998 4: (Suppl. 1) S84–S91

    PubMed  Google Scholar 

  168. Ihle JN . STATs: signal transducers and activators of transcription Cell 1996 84: 331–334

    CAS  PubMed  Google Scholar 

  169. Lin TS, Mahajan S, Frank DA . STAT signaling in the pathogenesis and treatment of leukemias Oncogene 2000 19: 2496–2504

    CAS  PubMed  Google Scholar 

  170. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues J Clin Invest 1997 100: 3140–3148

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu RY, Fan C, Garcia R, Jove R, Zuckerman KS . Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines Blood 1999 93: 2369–2379

    CAS  PubMed  Google Scholar 

  172. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA . A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia Science 1997 278: 1309–1312

    CAS  PubMed  Google Scholar 

  173. Lacronique V, Boureux A, Monni R, Dumon S, Mauchauffe M, Mayeux P, Gouilleux F, Berger R, Gisselbrecht S, Ghysdael J, Bernard OA . Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells Blood 2000 95: 2076–2083

    CAS  PubMed  Google Scholar 

  174. Schuringa JJ, Wierenga AT, Kruijer W, Vellenga E . Constitutive stat3, tyr705, and ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6 Blood 2000 95: 3765–3770

    CAS  PubMed  Google Scholar 

  175. Wilbanks AM, Mahajan S, Frank DA, Druker BJ, Gilliland DG, Carroll M . TEL/PDGFbetaR fusion protein activates STAT1 and STAT5: a common mechanism for transformation by tyrosine kinase fusion proteins Exp Hematol 2000 28: 584–593

    CAS  PubMed  Google Scholar 

  176. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells Blood 2000 95: 2118–2125

    CAS  PubMed  Google Scholar 

  177. Sawyer ST, Jacobs-Helber SM . Unraveling distinct intracellular signals that promote survival and proliferation: study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells J Hematother Stem Cell Res 2000 9: 21–29

    CAS  PubMed  Google Scholar 

  178. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y, Kim JD . Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo Proc Natl Acad Sci USA 2000 97: 4227–4232

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, Prosper F, Fernandez-Luna JL . Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL J Exp Med 2000 191: 977–984

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, Mollat P, Gisselbrecht S, Gouilleux F . IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line Oncogene 1999 18: 4191–4199

    CAS  PubMed  Google Scholar 

  181. Richard M, Louahed J, Demoulin JB, Renauld JC . Interleukin-9 regulates NF-kappaB activity through BCL3 gene induction Blood 1999 93: 4318–4327

    CAS  PubMed  Google Scholar 

  182. David M, Petricoin E 3rd, Benjamin C, Pine R, Weber MJ, Larner AC . Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins Science 1995 269: 1721–1723

    CAS  PubMed  Google Scholar 

  183. Stancato LF, Yu CR, Petricoin EF 3rd, Larner AC . Activation of Raf-1 by interferon gamma and oncostatin M requires expression of the Stat1 transcription factor J Biol Chem 1998 273: 18701–18704

    CAS  PubMed  Google Scholar 

  184. Jain N, Zhang T, Fong SL, Lim CP, Cao X . Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK) Oncogene 1998 17: 3157–3167

    CAS  PubMed  Google Scholar 

  185. Goh KC, Haque SJ, Williams BR . p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons EMBO J 1999 18: 5601–5608

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Winston LA, Hunter T . Intracellular signalling: putting JAKs on the kinase MAP Curr Biol 1996 6: 668–671

    CAS  PubMed  Google Scholar 

  187. Stancato LF, Sakatsume M, David M, Dent P, Dong F, Petricoin EF, Krolewski JJ, Silvennoinen O, Saharinen P, Pierce J, Marshall CJ, Sturgill T, Finbloom DS, Larner AC . Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway Mol Cell Biol 1997 17: 3833–3840

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Sakatsume M, Stancato LF, David M, Silvennoinen O, Saharinen P, Pierce J, Larner AC, Finbloom DS . Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent J Biol Chem 1998 273: 3021–3026

    CAS  PubMed  Google Scholar 

  189. Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tobe K, Yazaki Y, Kadowaki T . Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase J Biol Chem 1998 273: 15719–15726

    CAS  PubMed  Google Scholar 

  190. Murata T, Husain SR, Mohri H, Puri RK . Two different IL-13 receptor chains are expressed in normal human skin fibroblasts, and IL-4 and IL-13 mediate signal transduction through a common pathway Int Immunol 1998 10: 1103–1110

    CAS  PubMed  Google Scholar 

  191. Corey S, Eguinoa A, Puyana-Theall K, Bolen JB, Cantley L, Mollinedo F, Jackson TR, Hawkins PT, Stephens LR . Granulocyte–macrophage colony-stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells EMBO J 1993 12: 2681–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Minshall C, Arkins S, Dantzer R, Freund GG, Kelley KW . Phosphatidylinositol 3′-kinase, but not S6-kinase, is required for insulin-like growth factor-I and IL-4 to maintain expression of Bcl-2 and promote survival of myeloid progenitors J Immunol 1999 162: 4542–4549

    CAS  PubMed  Google Scholar 

  193. Minshall C, Arkins S, Freund GG, Kelley KW . Requirement for phosphatidylinositol 3′-kinase to protect hemopoietic progenitors against apoptosis depends upon the extracellular survival factor J Immunol 1996 156: 939–947

    CAS  PubMed  Google Scholar 

  194. Rameh LE, Cantley LC . The role of phosphoinositide 3-kinase lipid products in cell function J Biol Chem 1999 274: 8347–8350

    CAS  PubMed  Google Scholar 

  195. Fruman DA, Meyers RE, Cantley LC . Phosphoinositide kinases Annu Rev Biochem 1998 67: 481–507

    CAS  PubMed  Google Scholar 

  196. Alessi DR, Downes CP . The role of PI 3-kinase in insulin action Biochim Biophys Acta 1998 1436: 151–164

    CAS  PubMed  Google Scholar 

  197. Alessi DR, Cohen P . Mechanism of activation and function of protein kinase B Curr Opin Genet Dev 1998 8: 55–62

    CAS  PubMed  Google Scholar 

  198. Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J . 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro Curr Biol 1998 8: 69–81

    CAS  PubMed  Google Scholar 

  199. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA . Mechanism of activation of protein kinase B by insulin and IGF-1 EMBO J 1996 15: 6541–6551

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Anderson KE, Coadwell J, Stephens LR, Hawkins PT . Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B Curr Biol 1998 8: 684–691

    CAS  PubMed  Google Scholar 

  201. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT . Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B Science 1998 279: 710–714

    CAS  PubMed  Google Scholar 

  202. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate Science 1997 275: 665–668

    CAS  PubMed  Google Scholar 

  203. Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF . Interleukin 3-dependent survival by the Akt protein kinase Proc Natl Acad Sci USA 1997 94: 11345–11350

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME . Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery Cell 1997 91: 231–241

    CAS  PubMed  Google Scholar 

  205. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt Science 1997 278: 687–689

    CAS  PubMed  Google Scholar 

  206. Kennedy SG, Kandel ES, Cross TK, Hay N . Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria Mol Cell Biol 1999 19: 5800–5810

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R, Calabretta B, Skorski T . Activation of mitochondrial Raf-1 is involved in the anti-apoptotic effects of Akt Cancer Res 1999 59: 2815–2819

    CAS  PubMed  Google Scholar 

  208. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ . Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt Science 1999 286: 1738–1741

    CAS  PubMed  Google Scholar 

  209. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B) Science 1999 286: 1741–1744

    CAS  PubMed  Google Scholar 

  210. Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL . The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf Mol Cell Biol 2000 20: 1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC . Regulation of cell death protease caspase-9 by phosphorylation Science 1998 282: 1318–1321

    CAS  PubMed  Google Scholar 

  212. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase Nature 1999 401: 82–85

    CAS  PubMed  Google Scholar 

  213. Delhase M, Li N, Karin M . Kinase regulation in inflammatory response Nature 2000 406: 367–368

    CAS  PubMed  Google Scholar 

  214. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME . Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor Cell 1999 96: 857–868

    CAS  PubMed  Google Scholar 

  215. Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1 Nature 2000 404: 782–787

    CAS  PubMed  Google Scholar 

  216. McCubrey JA, Steelman LS, Mayo MW, Algate PA, Dellow RA, Kaleko M . Growth-promoting effects of insulin-like growth factor-1 (IGF-1) on hematopoietic cells: overexpression of introduced IGF-1 receptor abrogates interleukin-3 dependency of murine factor-dependent cells by a ligand-dependent mechanism Blood 1991 78: 921–929

    CAS  PubMed  Google Scholar 

  217. Minshall C, Arkins S, Straza J, Conners J, Dantzer R, Freund GG, Kelley KW . IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors J Immunol 1997 159: 1225–1232

    CAS  PubMed  Google Scholar 

  218. Liu Q, Schacher D, Hurth C, Freund GG, Dantzer R, Kelley KW . Activation of phosphatidylinositol 3′-kinase by insulin-like growth factor-I rescues promyeloid cells from apoptosis and permits their differentiation into granulocytes J Immunol 1997 159: 829–837

    CAS  PubMed  Google Scholar 

  219. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R . Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis Mol Cell Biol 1999 19: 7203–7215

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Lomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB . TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes J Immunol 1995 154: 1634–1643

    CAS  PubMed  Google Scholar 

  221. Anderson KL, Anderson G, Michell RH, Jenkinson EJ, Owen JJ . Intracellular signaling pathways involved in the induction of apoptosis in immature thymic T lymphocytes J Immunol 1996 156: 4083–4091

    CAS  PubMed  Google Scholar 

  222. McConkey DJ, Orrenius S, Jondal M . Agents that elevate cAMP stimulate DNA fragmentation in thymocytes J Immunol 1990 145: 1227–1230

    CAS  PubMed  Google Scholar 

  223. McConkey DJ, Orrenius S, Jondal M . Cellular signalling in programmed cell death (apoptosis) Immunol Today 1990 11: 120–121

    CAS  PubMed  Google Scholar 

  224. Vintermyr OK, Gjertsen BT, Lanotte M, Doskeland SO . Microinjected catalytic subunit of cAMP-dependent protein kinase induces apoptosis in myeloid leukemia (IPC-81) cells Exp Cell Res 1993 206: 157–161

    CAS  PubMed  Google Scholar 

  225. Myklebust JH, Josefsen D, Blomhoff HK, Levy FO, Naderi S, Reed JC, Smeland EB . Activation of the cAMP signaling pathway increases apoptosis in human B-precursor cells and is associated with downregulation of Mcl-1 expression J Cell Physiol 1999 180: 71–80

    CAS  PubMed  Google Scholar 

  226. Hafner S, Adler H, Mischak H, Janosch P, Heidecker G, Wolfman A, Pippig S, Lohse M, Ueffing M, Kolch W . Mechanism of inhibition of Raf-1 by protein kinase A Mol Cell Biol 1994 14: 6696–6703

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Marshall M . Interactions between Ras and Raf: key regulatory proteins in cellular transformation Mol Reprod Dev 1995 42: 493–499

    CAS  PubMed  Google Scholar 

  228. Weissinger E, Eissner G, Grammer C, Fackler S, Haefner B, Yoon L, Lu K, Bazarov A, Sedivy J, Mischak H, Kolch W . Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells Mol Cell Biol 1997 17: 3229–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Jun CD, Pae HO, Kim YC, Jeong SJ, Yoo JC, Lee EJ, Choi BM, Chae SW, Park RK, Chung HT . Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages J Ethnopharmacol 1998 62: 129–135

    CAS  PubMed  Google Scholar 

  230. Choi BM, Park R, Pae HO, Yoo JC, Kim YC, Jun CD, Jung BH, Oh GS, So HS, Kim YM, Chung HT . Cyclic adenosine monophosphate inhibits ursolic acid-induced apoptosis via activation of protein kinase A in human leukaemic HL-60 cells Pharmacol Toxicol 2000 86: 53–58

    CAS  PubMed  Google Scholar 

  231. Parvathenani LK, Buescher ES, Chacon-Cruz E, Beebe SJ . Type I cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3 J Biol Chem 1998 273: 6736–6743

    CAS  PubMed  Google Scholar 

  232. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ . Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A Mol Cell 1999 3: 413–422

    CAS  PubMed  Google Scholar 

  233. McConkey DJ . The role of calcium in the regulation of apoptosis Scanning Microsc 1996 10: 777–793; discussion 793 – 794

    CAS  PubMed  Google Scholar 

  234. Nicotera P, McConkey DJ, Dypbukt JM, Jones DP, Orrenius S . Ca2+-activated mechanisms in cell killing Drug Metab Rev 1989 20: 193–201

    CAS  PubMed  Google Scholar 

  235. McConkey DJ, Nicotera P, Hartzell P, Bellomo G, Wyllie AH, Orrenius S . Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration Arch Biochem Biophys 1989 269: 365–370

    CAS  PubMed  Google Scholar 

  236. McConkey DJ, Hartzell P, Nicotera P, Orrenius S . Calcium-activated DNA fragmentation kills immature thymocytes FASEB J 1989 3: 1843–1849

    CAS  PubMed  Google Scholar 

  237. Orrenius S, McConkey DJ, Nicotera P . Role of calcium in toxic and programmed cell death Adv Exp Med Biol 1991 283: 419–425

    CAS  PubMed  Google Scholar 

  238. McConkey DJ . Cellular signaling in cell death New Horiz 1993 1: 52–59

    CAS  PubMed  Google Scholar 

  239. McConkey DJ, Jondal M, Orrenius S . Cellular signaling in thymocyte apoptosis Semin Immunol 1992 4: 371–377

    CAS  PubMed  Google Scholar 

  240. McConkey DJ, Hartzell P, Amador-Perez JF, Orrenius S, Jondal M . Calcium-dependent killing of immature thymocytes by stimulation via the CD3/T cell receptor complex J Immunol 1989 143: 1801–1806

    CAS  PubMed  Google Scholar 

  241. Rodriguez-Tarduchy G, Collins M, Lopez-Rivas A . Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores EMBO J 1990 9: 2997–3002

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Rodriguez-Tarduchy G, Malde P, Lopez-Rivas A, Collins MK . Inhibition of apoptosis by calcium ionophores in IL-3-dependent bone marrow cells is dependent upon production of IL-4+ J Immunol 1992 148: 1416–1422

    CAS  PubMed  Google Scholar 

  243. Baffy G, Miyashita T, Williamson JR, Reed JC . Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production J Biol Chem 1993 268: 6511–6519

    CAS  PubMed  Google Scholar 

  244. Schreiber S, Crabtree G . The mechanism of action of cyclosporin A and FK506 Immunol Today 1992 13: 136–142

    CAS  PubMed  Google Scholar 

  245. Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Fiorentino D, Nourse J, Crabtree G . The mechanism of action of cyclosporin A and FK506 Clin Immunol Immunopathol 1996 80: S40–S45

    CAS  PubMed  Google Scholar 

  246. Waring P, Beaver J . Cyclosporin A rescues thymocytes from apoptosis induced by very low concentrations of thapsigargin: effects on mitochondrial function Exp Cell Res 1996 227: 264–276

    CAS  PubMed  Google Scholar 

  247. Huang QQ, Fang M, Zhang HQ, Xue SB . Cyclosporine inhibited calcium-mediated apoptosis of HL-60 cells Chung Kuo Yao Li Hsueh Pao 1997 18: 262–266

    CAS  PubMed  Google Scholar 

  248. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC . Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD Science 1999 284: 339–343

    CAS  PubMed  Google Scholar 

  249. Lotem J, Sachs L . Different mechanisms for suppression of apoptosis by cytokines and calcium mobilizing compounds Proc Natl Acad Sci USA 1998 95: 4601–4606

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Tokumitsu H, Takahashi N, Eto K, Yano S, Soderling TR, Muramatsu M . Substrate recognition by Ca2+/calmodulin-dependent protein kinase kinase. Role of the arg-pro-rich insert domain J Biol Chem 1999 274: 15803–15810

    CAS  PubMed  Google Scholar 

  251. Anderson KA, Means RL, Huang QH, Kemp BE, Goldstein EG, Selbert MA, Edelman AM, Fremeau RT, Means AR . Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase beta J Biol Chem 1998 273: 31880–31889

    CAS  PubMed  Google Scholar 

  252. Means AR . Regulatory cascades involving calmodulin-dependent protein kinases Mol Endocrinol 2000 14: 4–13

    CAS  PubMed  Google Scholar 

  253. Soderling TR . The Ca-calmodulin-dependent protein kinase cascade Trends Biochem Sci 1999 24: 232–236

    CAS  PubMed  Google Scholar 

  254. Atherfold PA, Norris MS, Robinson PJ, Gelfand EW, Franklin RA . Calcium-induced ERK activation in human T lymphocytes Mol Immunol 1999 36: 543–549

    CAS  PubMed  Google Scholar 

  255. Park I, Soderling T . Activation of Ca2+/calmodulin-dependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes J Biol Chem 1995 270: 30464–30469

    CAS  PubMed  Google Scholar 

  256. Enslen H, Tokumitsu H, Stork P, Davis R, Soderling T . Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade Proc Natl Acad Sci USA 1996 93: 10803–10808

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Yano S, Tokumitsu H, Soderling TR . Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway Nature 1998 396: 584–587

    CAS  PubMed  Google Scholar 

  258. McConkey DJ, Hartzell P, Jondal M, Orrenius S . Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C J Biol Chem 1989 264: 13399–13402

    CAS  PubMed  Google Scholar 

  259. McCubrey JA, Steelman LS, Sandlin G, Riddle RS, Ways DK . Effects of phorbol esters on an interleukin-3-dependent cell line Blood 1990 76: 63–72

    CAS  PubMed  Google Scholar 

  260. Mayo MW, Steelman LS, McCubrey JA . Phorbol esters support the proliferation of a hematopoietic cell line by upregulating c-jun expression Oncogene 1994 9: 1999–2008

    CAS  PubMed  Google Scholar 

  261. Ways DK, Qin W, Riddle RS, Garris TD, Bennett TE, Steelman LS, McCubrey JA . Differential effect of phorbol esters and interleukin-3 on protein kinase C isoform content and kinase activity in the FDC-P1 cell line Blood 1991 78: 2633–2641

    CAS  PubMed  Google Scholar 

  262. Weinstein-Oppenheimer C, Steelman LS, Algate PA, Blalock WL, Burrows C, Hoyle PE, Lee JT, Moye PW, Shelton JG, Franklin RA, McCubrey JA . Effects of deregulated Raf activation on integrin, cytokine receptor expression and the induction of apoptosis in hematopoietic cells Leukemia 2000 (in press)

  263. Goncalves F, Lacout C, Feger F, Cohen-Solal K, Guichard J, Cramer E, Vainchenker W, Dumenil D . Inhibition of erythroid differentiation and induction of megakaryocytic differentiation by thrombopoietin are regulated by two different mechanisms in TPO-dependent UT-7/c-mpl and TF-1/c-mpl cell lines Leukemia 1998 12: 1355–1366

    CAS  PubMed  Google Scholar 

  264. Wada HG, Indelicato SR, Meyer L, Kitamura T, Miyajima A, Kirk G, Muir VC, Parce JW . GM-CSF triggers a rapid, glucose dependent extracellular acidification by TF-1 cells: evidence for sodium/proton antiporter and PKC mediated activation of acid production J Cell Physiol 1993 154: 129–138

    CAS  PubMed  Google Scholar 

  265. Blagosklonny MV, Chuman Y, Bergan RC, Fojo T . Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells Leukemia 1999 13: 1028–1036

    CAS  PubMed  Google Scholar 

  266. Franklin RA, McLeod A, Robinson PJ . Calcium-induced p56(Lck) phosphorylation in human T lymphocytes via calmodulin-dependent kinase Biochem Biophys Res Commun 1999 259: 283–286

    CAS  PubMed  Google Scholar 

  267. Franklin RA, Brodie C, Melamed I, Terada N, Lucas JJ, Gelfand EW . Nerve growth factor induces activation of MAP-kinase and p90rsk in human B lymphocytes J Immunol 1995 154: 4965–4972

    CAS  PubMed  Google Scholar 

  268. Franklin RA, Tordai A, Mazer B, Terada N, Lucas J, Gelfand EW . Platelet activating factor activates MAPK and increases in intracellular calcium via independent pathways in B lymphocytes Biochem Biophys Res Commun 1995 209: 1111–1118

    CAS  PubMed  Google Scholar 

  269. Franklin R, Sawami H, Terada N, Lucas J, Gelfand E . Activation of p42erk2 MAPK and p90rsk by IL-2 occurs independently of protein kinase C Clin Immunol Immunopathol 1996 80: 116–122

    CAS  PubMed  Google Scholar 

  270. Whelan RD, Parker PJ . Loss of protein kinase C function induces an apoptotic response Oncogene 1998 16: 1939–1944

    CAS  PubMed  Google Scholar 

  271. Ruvolo PP, Deng X, Carr BK, May WS . A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis J Biol Chem 1998 273: 25436–25442

    CAS  PubMed  Google Scholar 

  272. Gubina E, Rinaudo MS, Szallasi Z, Blumberg PM, Mufson RA . Overexpression of protein kinase C isoform epsilon but not delta in human interleukin-3-dependent cells suppresses apoptosis and induces bcl-2 expression Blood 1998 91: 823–829

    CAS  PubMed  Google Scholar 

  273. Evans CA, Lord JM, Owen-Lynch PJ, Johnson G, Dive C, Whetton AD . Suppression of apoptosis by v-ABL protein tyrosine kinase is associated with nuclear translocation and activation of protein kinase C in an interleukin-3-dependent haemopoietic cell line J Cell Sci 1995 108: 2591–2598

    CAS  PubMed  Google Scholar 

  274. Datta R, Kojima H, Yoshida K, Kufe D . Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis J Biol Chem 1997 272: 20317–20320

    CAS  PubMed  Google Scholar 

  275. Emoto Y, Manome Y, Meinhardt G, Kisaki H, Kharbanda S, Robertson M, Ghayur T, Wong WW, Kamen R, Weichselbaum R et al. Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells EMBO J 1995 14: 6148–6156

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Morrow TA, Muljo SA, Zhang J, Hardwick JM, Schlissel MS . Pro-B cell-specific transcription and proapoptotic function of protein kinase C-eta Mol Cell Biol 1999 19: 5608–5618

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Venters HD, Tang Q, Liu Q, VanHoy RW, Dantzer R, Kelley KW . A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide Proc Natl Acad Sci USA 1999 96: 9879–9884

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Venters HD, Dantzer R, Kelley KW . A new concept in neurodegeneration: TNFalpha is a silencer of survival signals Trends Neurosci 2000 23: 175–180

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Scientist Development Grant from the American Heart Association (9930099N), an institutional research grant from the American Cancer Society (IRG-97–149), an Academic Research Initiation Grant from the North Carolina Biotechnology Center (9705-ARG-0009) awarded to RAF, a grant from the National Institutes of Health (R01 CA51025) and Academic Research Initiation Grants from the North Carolina Biotechnology Center (9805-ARG-0006 and 2000-ARG-0003) to JAM. We wish to acknowledge Dr Mikhail Blagosklonny, as well as both reviewers for providing feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franklin, R., McCubrey, J. Kinases: positive and negative regulators of apoptosis. Leukemia 14, 2019–2034 (2000). https://doi.org/10.1038/sj.leu.2401967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401967

Keywords

This article is cited by

Search

Quick links