Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Growth Factor, Cytokines and Cell Signaling

Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells

Abstract

The Raf oncoprotein plays critical roles in the transmission of mitogenic signals from cytokine receptors to the nucleus. There are three Raf family members: A-Raf, B-Raf and Raf-1. Conditionally active forms of the Raf proteins were created by ligating N-terminal truncated activated forms to the estrogen-receptor (ER) hormone-binding domain resulting in β-estradiol-inducible constructs. We introduced these chimeric ΔRaf:ER oncoproteins into the murine FDC-P1 hematopoietic cell line. Two different types of cells were recovered after drug selection in medium containing either cytokine or β-estradiol: (1) cytokine-dependent cells that expressed the ΔRaf:ER oncoproteins; and (2) Raf-responsive cells that grew in response to the ΔRaf:ER oncoprotein. Depending upon the particular ΔRaf:ER oncoprotein, cytokine-dependent cells were recovered 103 to 105 times more frequently than Raf-responsive cells. To determine whether BCL2 could synergize with the ΔRaf:ER oncoproteins and increase the frequency of cytokine-independent cells, cytokine-dependent ΔRaf:ER-expressing cells were infected with either a BCL2 containing retrovirus or an empty retroviral vector. BCL2 overexpression, by itself, did not relieve cytokine dependency of the parental cell line. However, BCL2 overexpression increased the frequency of Raf-responsive cells approximately five- to 100-fold. Cytokine-dependent ΔRaf:ER-infected cells entered the G1 phase of the cell cycle after cytokine withdrawal and entered S phase only after cytokine addition. Raf-responsive ΔRaf:ER cells entered the G1phase of the cell cycle after estrogen deprivation and re-entered the cell cycle after addition of either IL-3 or the estrogen receptor antagonist tamoxifen which activates the ΔRaf:ER constructs. Expression of the BCL2 oncoprotein often delayed the exit from the S and G2/M phases demonstrating the protective effects BCL2 provided to these Raf and BCL2 infected cells. The ΔRaf:ER cells expressed the ΔRaf:ER proteins and downstream MEK and ERK activities after β-estradiol treatment. Raf-responsive cells that were also infected with BCL2 expressed higher levels of BCL2 than the cells that were not infected with BCL2. Thus BCL2 can synergize with the activated Raf in the abrogation of cytokine dependency of certain hematopoietic cells. These cells will be useful in furthering our understanding of the roles of the Raf and BCL2 oncoproteins in hematopoietic cell growth, cell cycle progression and prevention of apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA . Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs Leukemia 1999 13: 1109–1166

    Article  CAS  PubMed  Google Scholar 

  2. Wang XY, Steelman LS, McCubrey JA . Abnormal activation of cytokine gene expression by intracisternal type A particle transposition: effects of mutations which result in autocrine growth factor stimulation and malignant transformation Cytokin Cell Mol Ther 1997 3: 3–19

    CAS  Google Scholar 

  3. Lotem J, Sachs L . Control of apoptosis in hematopoiesis and leukemia by cytokines, tumor suppressor and oncogenes Leukemia 1996 10: 925–931

    CAS  PubMed  Google Scholar 

  4. Wang XY, McCubrey J . Regulation of interleukin 3 expression in normal and autocrine transformed hematopoietic cells Int J Oncol 1997 10: 989–1001

    CAS  PubMed  Google Scholar 

  5. Algate PA, Steelman LS, Mayo MW, Miyajima A, McCubrey JA . Regulation of the interleukin-3 (IL-3) receptor by IL-3 in the fetal liver-derived FL5.12 cell line Blood 1994 83: 2450–2468

    Google Scholar 

  6. Steelman LS, Algate PA, Blalock WL, Wang XY, Prevost KD, Hoyle PE, McCubrey JA . Oncogenic effects of overexpression of the interleukin-3 receptor on hematopoietic cells Leukemia 1996 10: 528–542

    CAS  PubMed  Google Scholar 

  7. Miyajima A, Kitamura T, Harada N, Yokota T, Arai K-L . Cytokine receptors and signal transduction Annu Rev Immunol 1992 10: 295–331

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita T, Yokata T, Arai K, Miyajima A . Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors EMBO J 1995 14: 265–275

    Article  Google Scholar 

  9. Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D . Growth factor-dependent hemopoietic precursor cell lines J Exp Med 1980 152: 1036–1047

    Article  CAS  PubMed  Google Scholar 

  10. McKearn JP, McCubrey JA, Fagg B . Enrichment of hematopoietic precursor cells and cloning of multipotential B lymphocyte precursors Proc Natl Acad Sci USA 1985 82: 7414–7418

    Article  CAS  PubMed  Google Scholar 

  11. McCubrey JA, Holland G, McKearn J, Risser R . Abrogation of factor-dependence in two IL-3-dependent cell lines can occur by two distinct mechanisms Oncogene Res 1989 4: 97–109

    CAS  PubMed  Google Scholar 

  12. McCubrey JA, Smith SR, Algate PA, deVente JE, White MK, Steelman LS . Retroviral infection can abrogate the factor-dependency of hematopoietic cells by autocrine and non-autocrine mechanisms depending on the presence of a functional viral oncogene Oncogene 1993 8: 2905–2915

    CAS  PubMed  Google Scholar 

  13. McCubrey JA, Steelman LS, Wang XY, Algate PA, Hoyle PE, White C, Davidian EW, Prevost KD, Robbins P, Mylott D, White MK . Differential effects of viral and cellular oncogenes on the growth factor-dependency of hematopoietic cells Int J Oncol 1995 7: 285–310

    Google Scholar 

  14. Kitamura T, Sato M, Arai K-I, Miyajima A . Expression cloning of the human IL-3 receptor cDNA reveals a shared β subunit of the human IL-3 and GM-CSF receptors Cell 1991 66: 1165–1174

    Article  CAS  PubMed  Google Scholar 

  15. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction Leukemia 2000 14: 9–21

    Article  CAS  PubMed  Google Scholar 

  16. McCubrey JA, Steelman LS, Hoyle PA, Blalock WL, Weinstein-Oppenheimer CR, Franklin RA, Cherwinski H, Bosch E, McMahon M . Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells Leukemia 1998 12: 1903–1929

    Article  CAS  PubMed  Google Scholar 

  17. Sakatsume M, Stancato LF, David M, Silvennoinen O, Saharinen P, Pierce J, Larner AC, Finbloom DS . Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent J Biol Chem 1998 273: 3021–3026

    Article  CAS  PubMed  Google Scholar 

  18. Stancato LF, Sakatsume M, David M, Dent P, Dong F, Petricoin EF, Krolewski JJ, Silvennoinen O, Saharinen P, Pierce J, Marshall CJ, Sturgill T, Finbloom DS, Larner AC . Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway Mol Cell Biol, 1997 17: 3833–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morrison D . Mechanisms regulating Raf-1 activity in signal transduction pathways Mol Repro Dev 1995 42: 507–514

    Article  CAS  Google Scholar 

  20. Dent P, Wu J, Romero G, Vincent LA, Castle D, Sturgill TW . Activation of the mitogen-activated protein kinase pathway in Triton X-100 disrupted NIH-3T3 cells by p21 ras and in vitro by plasma membranes from NIH3T3 cells Mol Biol Cell 1993 4: 83–493

    Article  Google Scholar 

  21. Dent P, Chow YH, Wu J, Morrison DK, Jove R, Sturgill TW . Expression, purification and characterization of recombinant mitogen-activated protein kinase kinases Biochem J, 1994 303: 105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dent P, Reardon DB, Morrison DK, Sturgill TW . Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro Mol Cell Biol 1995 15: 4125–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dent P, Jarvis WD, Birrer MJ, Fisher PB, Schmidt-Ullrich RK, Grant S . The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity Leukemia 1998 12: 1843–1850

    Article  CAS  PubMed  Google Scholar 

  24. Jelinek T, Dent P, Sturgill TW, Weber MJ . Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation Mol Cell Biol 1996 16: 1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakamoto KM, Mignacca RC, Gasson JC . Signal transduction by granulocyte–macrophage colony-stimulating factor and interleukin-3 receptors Recep Chann 1994 2: 175–181

    CAS  Google Scholar 

  26. Kwon EM, Sakamoto KM . The molecular mechanism of action of granulocyte–macrophage/colony-stimulating factor J Invest Med 1996 44: 442–446

    CAS  Google Scholar 

  27. Lee HJ, Mignacca RC, Sakamoto KM . Transcriptional activation of egr-1 by granulocyte–macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133 J Biol Chem 1995 270: 15979–15983

    Article  CAS  PubMed  Google Scholar 

  28. Wong A, Sakamoto KM . Granulocyte–macrophage colony-stimulating factor induces the transcriptional activation of egr-1 through a protein kinase A-independent signaling pathway J Biol Chem 1995 270: 30271–30273

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe S, Kubota H, Sakamoto KM, Arai K . Characterization of cis-acting sequences and trans-acting signals regulating early growth response 1 and c-fos promoters through the granulocyte–macrophage colony-stimulating factor receptor in BA/F3 cells Blood 1997 89: 1197–1206

    CAS  PubMed  Google Scholar 

  30. Mignacca RC, Lee HJ, Kwon EM, Sakamoto KM . Mechanism of transcriptional activation of the immediate early gene Egr-1 in response to PIXY321 Blood 1996 88: 848–854

    CAS  PubMed  Google Scholar 

  31. Sakamoto KM, Fraser JK, Lee HJ, Lehman E, Gasson JC . Granulocyte–macrophage colony-stimultating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter Mol Cell Biol 1994 14: 5975–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samuels ML, Weber MJ, Bishop JM, McMahon M . Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase Mol Cell Biol 1993 13: 6241–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pritchard CA, Samuels ML, Bosch E, McMahon M . Conditionally oncogenic forms of the A-raf and B-raf protein kinases display different biological and biochemical properties in NIH 3T3 cells Mol Cell Biol 1995 15: 9430–9442

    Article  Google Scholar 

  34. Bosch E, Cherwinski H, Peterson D, McMahon M . Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1 Oncogene 1997 11: 1021–1034

    Article  Google Scholar 

  35. Blalock WL, Steelman LS, Pearce M, Franklin RA, McCarthy SA, Cherwinski H, McMahon M, McCubrey JA . A conditionally active form of MEK1 results in autocrine transformation in human and mouse hematopoietic cells Oncogene 2000 19: 526–536

    Article  CAS  PubMed  Google Scholar 

  36. McCubrey JA, Steelman LS, Moye PW, Hoyle PE, Weinstein-Oppenheimer C, Chang F, Pierce M, White MK, Franklin R, Blalock WL . Effects of deregulated Raf and MEK1 expression on the cytokine dependency of hematopoietic cells Adv Enzyme Regl 2000 40: (in press)

  37. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M, Cherwinski H, Bosch H, McMahon M, McCubrey JA . Differential abilities of the Raf family of protein of kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism Leukemia 2000 14: 642–656

    Article  CAS  PubMed  Google Scholar 

  38. Yang E, Korsmeyer SJ . Molecular thanatopsis: a discourse on the BCL2 family and cell death Blood 1996 88: 386–401

    CAS  Google Scholar 

  39. Kroemer G . The proto-oncogene Bcl-2 and its role in regulating apoptosis Nature Med 1997 3: 614–620

    Article  CAS  PubMed  Google Scholar 

  40. Yang E, Jiping Z, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death Cell 1995 80: 285–291

    Article  CAS  PubMed  Google Scholar 

  41. Young LS, Eliopoulos AG, Kerr DJ, Herod J, Hodgkins L, Krajewski S, Reed JC . The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2 Oncogene 1995 11: 1217–1228

    PubMed  Google Scholar 

  42. Núnez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ . Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines J Immnol 1990 144: 3602–3610

    Google Scholar 

  43. Sato N, Sakamaki K, Terada N, Arai K-I, Miyajima A . Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common β subunit responsible for different signaling EMBO J 1993 12: 4181–4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A J Biol Chem 1999 274: 20296–20300

    Article  CAS  PubMed  Google Scholar 

  45. Ruvolo PP, Deng X, Carr BK, May WS . A functional role for mitochondrial protein kinase C alpha in Bcl2 phosphorylation and suppression of apoptosis J Biol Chem 1998 273: 25436–25442

    Article  CAS  PubMed  Google Scholar 

  46. Wang HG, Rapp UR, Reed JC . Bcl-2 targets the protein kinase Raf-1 to mitochondria Cell 1996 87: 629–638

    Article  CAS  PubMed  Google Scholar 

  47. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . Serine phosphorylation of death agonist Bad in response to survival factor results in binding to 14–3-3 not Bcl-xL Cell 1996 87: 619–628

    Article  CAS  Google Scholar 

  48. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt Science 1997 278: 687–689

    Article  CAS  Google Scholar 

  49. Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN . Transduction of interleukin-2 anti-apoptotic and proliferative signals via Akt protein kinase Proc Natl Acad Sci USA 1997 94: 3627–3632

    Article  CAS  PubMed  Google Scholar 

  50. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL . Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase Mol Cell Biol 1998 18: 3509–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scheid MP, Duronio V . Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation Proc Natl Acad Sci USA 1998 95: 7439–7444

    Article  CAS  PubMed  Google Scholar 

  52. Haldar S, Basu A, Croce CM . Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells Cancer Res 1998 58: 1609–1615

    CAS  Google Scholar 

  53. Deng X, Ito T, Carr B, Mumby M, May WS . Reversible phosphorylation of Bcl-2 following IL-3 or byrostatin is mediated by interaction of PP2A J Biol Chem 1998 271: 34157–34163

    Article  Google Scholar 

  54. Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM . Taxol-induced apoptosis and phosphorylation of the Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway Cancer Res 1996 56: 1851–1854

    CAS  PubMed  Google Scholar 

  55. Blagosklonny MV, Chuman Y, Bergan RC, Fojo T . Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells Leukemia 1999 13: 1028–1036

    Article  CAS  PubMed  Google Scholar 

  56. Hu ZB, Minden MD, McCulloch EA . Phosphorylation of Bcl-2 after exposure of human leukemic cells to retinoic acid Blood 1998 92: 1768–1775

    CAS  PubMed  Google Scholar 

  57. Rapp UR, Troppmair J, Carroll M, May WS . Role of raf-1 protein kinase in IL-3 and GM-CSF mediated signal transduction Curr Top Microbiol Immunol 1990 166: 129–139

    CAS  PubMed  Google Scholar 

  58. Cleveland JL, Troppmair J, Packham G, Askew DS, Lloyd P, Gonzalez-Garcia M, Nuñez G, Ihle JN, Rapp UR . v-raf suppresses apoptosis and promotes growth of interleukin-3-dependent myeloid cells Oncogene 1994 9: 2227–2233

    Google Scholar 

  59. Wang HG, Miyashita T, Takayama S, Sato T, Torigoe T, Krajewski S, Tanaka S, Hovey L III, Troppmair J, Rapp UR, Reed JC . Apoptosis regulation by interaction of Bcl-2 and Raf-1 kinase Oncogene 1994 9: 2751–2756

    CAS  PubMed  Google Scholar 

  60. Wang HG, Takayama S, Rapp UR, Reed JC . Bcl-2 interacting protein, Bag-1 binds to and activates the kinase Raf-1 Proc Natl Acad Sci USA 1996 93: 7063–7068

    Article  CAS  PubMed  Google Scholar 

  61. Wang HG, Rapp UR, Reed JC . Bcl-2 targets the protein kinase Raf-1 to mitochondria Cell 1996 87: 629–638

    Article  CAS  PubMed  Google Scholar 

  62. Srivastava RK, Mi QS, Hardwick JM, Longo DL . Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis Proc Nat Acad Sci USA 1999 96: 3775–3780

    Article  CAS  PubMed  Google Scholar 

  63. Dudley DT, Pung L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinases cascade Proc Natl Acad Sci USA 1995 92: 7686–7689

    Article  CAS  Google Scholar 

  64. Pumiglia KM, Decker SJ . Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway Proc Natl Acad Sci USA 1997 94: 448–452

    Article  CAS  PubMed  Google Scholar 

  65. Woods D, Parry D, Chewinski H, Bosch E, Lees E, McMahon M . Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1 Mol Cell Biol 1997 17: 5598–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller AD, Rosman CJ . Improved retroviral vectors for gene transfer and expression Biotechniques 1989 7: 980–990

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H . Cooperating oncogenes converge to regulate cyclin/cdx complexes Genes Dev 1997 11: 663–667

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the artwork done by Ms Catherine Spruill. This work was supported in part by a grant (R01CA51025) from the NCI and the North Carolina Biotechnology Center (9805-ARG-0006) to JAM. RAF was supported in part by grants from the American Cancer Society (IRG-97–149), American Heart Association (9930099N) and the North Carolina Biotechnology Center (9705-ARG-0009).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moye, P., Blalock, W., Hoyle, P. et al. Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells. Leukemia 14, 1060–1079 (2000). https://doi.org/10.1038/sj.leu.2401792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401792

Keywords

This article is cited by

Search

Quick links