Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The effects of exercise on haemodynamic function in relation to the familial hypertension risk model

Abstract

Offspring hypertensives are characterized by a hyperactive sympathetic nervous system and other early cardiovascular abnormalities that increase the risk of developing hypertension. A physically active lifestyle is associated with a lower risk of hypertension, although the mechanisms are incompletely understood and likely to be multifactorial. One aspect that has received little attention is the interaction of exercise with familial hypertension risk. The present review examines the effects of exercise on haemodynamic function in relation to the familial hypertension risk model. Paradoxically, exercise may be viewed as potent stressor to the cardiovascular system, although recent studies are beginning to show that cardiovascular adaptations, primarily mediated by changes in sympatho-vagal balance, following both acute and chronic exercise may be particularly important for individuals with familial risk of hypertension. Future studies that focus on inflammatory, metabolic, and genetic pathways may uncover further beneficial effects of exercise in relation to familial risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Higgins MW, Keller JB, Metzner HL, Moore FE, Ostrander Jr LD . Studies of blood pressure in Tecumseh, Michigan. II. Antecedents in childhood of high blood pressure in young adults. Hypertension 1980; 2: 117–123.

    Article  CAS  PubMed  Google Scholar 

  2. Mo R, Nordrehaug JE, Omvik P, Lund-Johansen P . The Bergen Blood Pressure Study: prehypertensive changes in cardiac structure and function in offspring of hypertensive families. Blood Press 1995; 4: 16–22.

    Article  CAS  PubMed  Google Scholar 

  3. Pitzalis MV, Iacoviello M, Massari F, Guida P, Romito R, Forleo C et al. Influence of gender and family history of hypertension on autonomic control of heart rate, diastolic function and brain natriuretic peptide. J Hypertens 2001; 19: 143–148.

    Article  CAS  PubMed  Google Scholar 

  4. Manunta P, Iacoviello M, Forleo C, Messaggio E, Hamlyn JM, Lucarelli K et al. High circulating levels of endogenous ouabain in the offspring of hypertensive and normotensive individuals. J Hypertens 2005; 23: 1677–1681.

    Article  CAS  PubMed  Google Scholar 

  5. Yasmin R, Falzone R, Brown MJ . Determinants of arterial stiffness in offspring of families with essential hypertension. Am J Hypertens 2004; 17: 292–298.

    Article  CAS  PubMed  Google Scholar 

  6. Zizek B, Poredos P, Videcnik V . Endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension. Heart 2001; 85: 215–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Hooft IM, Grobbee DE, Derkx FH, de Leeuw PW, Schalekamp MA, Hofman A . Renal hemodynamics and the renin-angiotensin-aldosterone system in normotensive subjects with hypertensive and normotensive parents. N Engl J Med 1991; 324: 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  8. Michel MC, Galal O, Stoermer J, Bock KD, Brodde OE . Alpha- and beta-adrenoceptors in hypertension. II. Platelet alpha 2- and lymphocyte beta 2-adrenoceptors in children of parents with essential hypertension. A model for the pathogenesis of the genetically determined hypertension. J Cardiovasc Pharmacol 1989; 13: 432–439.

    Article  CAS  PubMed  Google Scholar 

  9. Makris TK, Stavroulakis GA, Hatzizacharias AN, Krespi PG, Margos P, Tsoukala C et al. Parental history of hypertension is associated with coagulation-fibrinolytic balance disorders. Thromb Res 2003; 111: 45–49.

    Article  CAS  PubMed  Google Scholar 

  10. Furuhashi M, Ura N, Higashiura K, Miyazaki Y, Murakami H, Hyakukoku M et al. Low adiponectin level in young normotensive men with a family history of essential hypertension. Hypertens Res 2005; 28: 141–146.

    Article  CAS  PubMed  Google Scholar 

  11. Vlasakova Z, Pelikanova T, Karasova L, Skibova J . Insulin secretion, sensitivity, and metabolic profile of young healthy offspring of hypertensive parents. Metabolism 2004; 53: 469–475.

    Article  CAS  PubMed  Google Scholar 

  12. Makris TK, Stavroulakis GA, Krespi PG, Hatzizacharias AN, Kyriaki DK, Chronakis EV et al. Elevated plasma immunoreactive leptin levels preexist in healthy offspring of patients with essential hypertension. Am Heart J 1999; 138: 922–925.

    Article  CAS  PubMed  Google Scholar 

  13. Lopes HF, Silva HB, Soares JA, Filho B, Consolim-Colombo FM, Giorgi DM et al. Lipid metabolism alterations in normotensive subjects with positive family history of hypertension. Hypertension 1997; 30: 629–631.

    Article  CAS  PubMed  Google Scholar 

  14. Andersen UB, Dige-Petersen H, Frandsen EK, Ibsen H, Volund A . Basal insulin-level oscillations in normotensive individuals with genetic predisposition to essential hypertension exhibit an irregular pattern. J Hypertens 1997; 15: 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  15. Light KC, Girdler SS, Sherwood A, Bragdon EE, Brownley KA, West SG et al. High stress responsivity predicts later blood pressure only in combination with positive family history and high life stress. Hypertension 1999; 33: 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  16. Fagard RH . Physical activity, fitness and blood pressure. In: Birkenhäger WH, Reid JL, Bulpitt CJ (eds). Handbook of Hypertension, vol. 20: Epidemiology of hypertension. Elsevier: Amsterdam, 2000, pp 191–211.

    Google Scholar 

  17. Wilson MF, Sung BH, Pincomb GA, Lovallo WR . Exaggerated pressure response to exercise in men at risk for systemic hypertension. Am J Cardiol 1990; 66: 731–736.

    Article  CAS  PubMed  Google Scholar 

  18. Bond Jr V, Franks BD, Tearney RJ, Wood B, Melendez MA, Johnson L et al. Exercise blood pressure response and skeletal muscle vasodilator capacity in normotensives with positive and negative family history of hypertension. J Hypertens 1994; 12: 285–290.

    Article  PubMed  Google Scholar 

  19. Matthews CE, Pate RR, Jackson KL, Ward DS, Macera CA, Kohl HW et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Clin Epidemiol 1998; 51: 29–35.

    Article  CAS  PubMed  Google Scholar 

  20. Schneiderman N, Gellman M, Peckerman A, Hurwitz B, Saab P, Llabre M . Cardiovascular reactivity as an indicator of risk for future hypertension. In: McCabe PM, Schneiderman N, Field T, Wallace AR (eds). Stress, Coping, and Cardiovascular Disease. Lawrence Erlbaum Associates: Mahwah, NJ, 2000, pp 181–202.

    Google Scholar 

  21. Holmes DS, Cappo BM . Prophylactic effect of aerobic fitness on cardiovascular arousal among individuals with a family history of hypertension. J Psychosom Res 1987; 31: 601–605.

    Article  CAS  PubMed  Google Scholar 

  22. Buckworth J, Dishman RK, Cureton KJ . Autonomic responses of women with parental hypertension: Effects of physical activity and fitness. Hypertension 1994; 24: 576–584.

    Article  CAS  PubMed  Google Scholar 

  23. Jackson EM, Dishman RK . Hemodynamic responses to stress among black women: fitness and parental hypertension. Med Sci Sports Exerc 2002; 34: 1097–1104.

    Article  PubMed  Google Scholar 

  24. Hamer M, Boutcher YN, Boutcher SH . Cardiovascular and renal responses to mental challenge in highly and moderately active males with family history of hypertension. J Hum Hypert 2002; 16: 319–326.

    Article  CAS  Google Scholar 

  25. Buckworth J, Convertino VA, Cureton KJ, Dishman RK . Increased finger arterial blood pressure after exercise detraining in women with parental hypertension: autonomic tasks. Acta Physiol Scand 1997; 160: 29–41.

    Article  CAS  PubMed  Google Scholar 

  26. Tanzilli G, Barilla F, Pannitteri G, Greco C, Comito C, Schiariti M et al. Exercise training counteracts the abnormal release of plasma endothelin-1 in normal subjects at risk for hypertension. Ital Heart J 2003; 4: 107–112.

    PubMed  Google Scholar 

  27. Georgiades A, Sherwood A, Gullette EC, Babyak MA, Hinderliter A, Waugh R et al. Effects of exercise and weight loss on mental stress-induced cardiovascular responses in individuals with high blood pressure. Hypertension 2000; 36: 171–176.

    Article  CAS  PubMed  Google Scholar 

  28. Lawler JE, Naylor SK, Wang CH . Family history of hypertension, exercise training, and reactivity to stress in rats. Int J Behav Med 1995; 2: 233–251.

    Article  CAS  PubMed  Google Scholar 

  29. Cornelissen VA, Fagard RH . Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005; 46: 667–675.

    Article  CAS  PubMed  Google Scholar 

  30. Rice T, An P, Gagnon J, Leon AS, Skinner JS, Wilmore JH et al. Heritability of HR and BP response to exercise training in the HERITAGE Family Study. Med Sci Sports Exerc 2002; 34: 972–979.

    Article  PubMed  Google Scholar 

  31. An P, Perusse L, Rankinen T, Borecki IB, Gagnon J, Leon AS et al. Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE Family Study. Int J Sports Med 2003; 24: 57–62.

    Article  CAS  PubMed  Google Scholar 

  32. Rivera MA, Echegaray M, Rankinen T, Perusse L, Rice T, Gagnon J et al. TGF-beta(1) gene-race interactions for resting and exercise blood pressure in the HERITAGE Family Study. J Appl Physiol 2001; 91: 1808–1813.

    Article  CAS  PubMed  Google Scholar 

  33. Rankinen T, Gagnon J, Perusse L, Chagnon YC, Rice T, Leon AS et al. AGT M235 T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE Family Study. Am J Physiol Heart Circ Physiol 2000; 279: H368–H374.

    Article  CAS  PubMed  Google Scholar 

  34. Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 1997; 96: 741–747.

    Article  CAS  PubMed  Google Scholar 

  35. Mack GW, Thompson CA, Doerr DF, Nadel ER, Convertino VA . Diminished baroreflex control of forearm vascular resistance following training. Med Sci Sports Exerc 1991; 23: 1367–1374.

    Article  CAS  PubMed  Google Scholar 

  36. McCubbin JA, Surwit RS, Williams Jr RB . Opioid dysfunction and risk for hypertension: naloxone and blood pressure responses during different types of stress. Psychosom Med 1988; 50: 8–14.

    Article  CAS  PubMed  Google Scholar 

  37. McCubbin JA, Cheung R, Montgomery TB, Bulbulian R, Wilson JF . Aerobic fitness and opioidergic inhibition of cardiovascular stress reactivity. Psychophysiology 1992; 29: 687–697.

    Article  CAS  PubMed  Google Scholar 

  38. Spina RJ, Turner MJ, Ehsani AA . Beta-adrenergic-mediated improvement in left ventricular function by exercise training in older men. Am J Physiol 1998; 274: H397–H404.

    CAS  PubMed  Google Scholar 

  39. Spina RJ, Bourey RE, Ogawa T, Ehsani AA . Effects of exercise training on alpha-adrenergic mediated pressor responses and baroreflex function in older subjects. J Gerontol 1994; 49: B277–B281.

    Article  CAS  PubMed  Google Scholar 

  40. Martin III WH, Spina RJ, Korte E, Ogawa T . Effects of chronic and acute exercise on cardiovascular beta-adrenergic responses. J Appl Physiol 1991; 71: 1523–1528.

    Article  CAS  PubMed  Google Scholar 

  41. Lenard Z, Studinger P, Mersich B, Pavlik G, Kollai M . Cardiovagal autonomic function in sedentary and trained offspring of hypertensive parents. J Physiol 2005; 565: 1031–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M et al. Arterial stiffness and the development of hypertension. The ARIC study Hypertension 1999; 34: 201–206.

    Article  CAS  PubMed  Google Scholar 

  43. Endre T, Mattiasson I, Hulthen UL, Lindgarde F, Berglund G . Insulin resistance is coupled to low physical fitness in normotensive men with a family history of hypertension. J Hypertens 1994; 12: 81–88.

    Article  CAS  PubMed  Google Scholar 

  44. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA . American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 2004; 36: 533–553.

    Article  PubMed  Google Scholar 

  45. MacDonald JR . Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens 2002; 16: 225–236.

    Article  CAS  PubMed  Google Scholar 

  46. Halliwill JR . Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 2001; 29: 65–70.

    CAS  PubMed  Google Scholar 

  47. Hamer M, Taylor A, Steptoe A . The effect of acute aerobic exercise on stress related blood pressure responses: a systematic review and meta-analysis. Biol Psychol 2006; 71: 183–190.

    Article  PubMed  Google Scholar 

  48. Hamer M, Jones J, Boutcher SH . Acute exercise reduces vascular reactivity to mental challenge in offspring of hypertensive families. J Hypertens 2006; 24: 315–320.

    Article  PubMed  Google Scholar 

  49. Halliwill JR, Lawler LA, Eickhoff TJ, Dietz NM, Nauss LA, Joyner MJ . Forearm sympathetic withdrawal and vasodilatation during mental stress in humans. J Physiol 1997; 504: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peronnet F, Massicotte D, Paquet JE, Brisson G, de Champlain J . Blood pressure and plasma catecholamine responses to various challenges during exercise recovery in man. Eur J Appl Physiol 1989; 58: 551–555.

    Article  CAS  Google Scholar 

  51. Brownley KA, Hinderliter AL, West SG, Girdler SS, Sherwood A, Light KC . Sympathoadrenergic mechanisms in reduced hemodynamic stress responses after exercise. Med Sci Sports Exerc 2003; 35: 978–986.

    Article  PubMed  Google Scholar 

  52. Blaes N, Boissel JP . Growth stimulating effect of catecholamines on rat aortic smooth muscle cells in culture. J Cell Physiol 1983; 116: 167–172.

    Article  CAS  PubMed  Google Scholar 

  53. Macnair AL . Is inactivity the origin of essential hypertension: should we all be runners? Nephrol Dial Transplant 2000; 15: 1751–1754.

    Article  CAS  PubMed  Google Scholar 

  54. Julius S . Corcoran Lecture. Sympathetic hyperactivity and coronary risk in hypertension. Hypertension 1993; 21: 886–893.

    Article  CAS  PubMed  Google Scholar 

  55. O'Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ . Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 2002; 20: 1335–1345.

    Article  CAS  PubMed  Google Scholar 

  56. Bauer N, Muller-Ehmsen J, Kramer U, Hambarchian N, Zobel C, Schwinger RH et al. Ouabain-like compound changes rapidly on physical exercise in humans and dogs: effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension 2005; 45: 1024–1028.

    Article  CAS  PubMed  Google Scholar 

  57. El-Sayed MS, Ali N, El-Sayed Ali Z . Aggregation and activation of blood platelets in exercise and training. Sports Med 2005; 35: 11–22.

    Article  PubMed  Google Scholar 

  58. Grundy SM . Inflammation, hypertension, and the metabolic syndrome. JAMA 2003; 290: 3000–3002.

    Article  CAS  PubMed  Google Scholar 

  59. Petersen AM, Pedersen BK . The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98: 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  60. Abramson JL, Vaccarino V . Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 2002; 162: 1286–1292.

    Article  PubMed  Google Scholar 

  61. Tomaszewski M, Charchar FJ, Crawford L, Zukowska-Sczechowska E, Grzeszczak W, Sattar N et al. Serum C-reactive protein and lipids in ultra-Marathon runners. Am J Cardiol 2004; 94: 125–126.

    Article  CAS  PubMed  Google Scholar 

  62. Mattusch F, Dufaux B, Heine O, Mertens I, Rost R . Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med 2000; 21: 21–24.

    Article  CAS  PubMed  Google Scholar 

  63. Tsukui S, Kanda T, Nara M, Nishino M, Kondo T, Kobayashi I . Moderate-intensity regular exercise decreases serum tumor necrosis factor-alpha and HbA1c levels in healthy women. Int J Obes Rel Met Dis 2000; 24: 1207–1211.

    Article  CAS  Google Scholar 

  64. Allemann Y, Hutter D, Aeschbacher BC, Fuhrer J, Delacretaz E, Weidmann P . Increased central body fat deposition precedes a significant rise in resting blood pressure in male offspring of essential hypertensive parents: a 5 year follow-up study. J Hypertens 2001; 19: 2143–2148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MH is supported by a grant from the British Heart Foundation, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, M. The effects of exercise on haemodynamic function in relation to the familial hypertension risk model. J Hum Hypertens 20, 313–319 (2006). https://doi.org/10.1038/sj.jhh.1001999

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001999

Keywords

This article is cited by

Search

Quick links