Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury

Abstract

The development of efficient systems for in vivo gene transfer to the central nervous system (CNS) may provide a useful therapeutic strategy for the alleviation of several neurological disorders. In this study, we evaluated the feasibility of nonviral gene therapy to the CNS mediated by cationic liposomes. We present evidence of the successful delivery and expression of both a reporter and a therapeutic gene in the rodent brain, as evaluated by immunohistochemical assays. Our results indicate that transferrin-associated cationic liposome/DNA complexes (Tf-lipoplexes) allow a significant enhancement of transfection activity as compared to plain complexes, and that 8/1 (+/−) Tf-lipoplexes constitute the best formulation to mediate in vivo gene transfer. We demonstrated that Tf-lipoplex-mediated nerve growth factor transgene expression attenuates the morphological damages of the kainic acid-induced lesion as assessed by 2,3,5-triphenyltetrazolium chloride (TTC) vital staining. These findings suggest the usefulness of these lipid-based vectors in mediating the delivery of therapeutic genes to the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pardridge WM . CNS drug design based on principles of blood–brain barrier transport. J Neurochem 1998; 70: 1781–1792.

    Article  CAS  PubMed  Google Scholar 

  2. Cornford EM, Hyman S . Blood–brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 1999; 36: 145–163.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y et al. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther 2004; 15: 339–350.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Zhu C, Pardridge WM . Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 2002; 6: 67–72.

    Article  CAS  PubMed  Google Scholar 

  5. Blesch A, Uy HS, Diergardt N, Tuszynski MH . Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor. J Neurosci Res 2000; 59: 402–409.

    Article  CAS  PubMed  Google Scholar 

  6. Martinez-Serrano A, Olsson M, Gates MA, Bjorklund A . In utero gene transfer reveals survival effects of nerve growth factor on rat brain cholinergic neurons during development. Eur J Neurosci 1998; 10: 263–271.

    Article  CAS  PubMed  Google Scholar 

  7. Wu D, Pardridge WM . Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA 1999; 96: 254–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinez-Serrano A, Hantzopoulos PA, Bjorklund A . Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain – neurotrophic effects on cholinergic neurons. Eur J Neurosci 1996; 8: 727–735.

    Article  CAS  PubMed  Google Scholar 

  9. Tenenbaum L et al. Neuroprotective gene therapy for Parkinson's disease. Curr Gene Ther 2002; 2: 451–483.

    Article  CAS  PubMed  Google Scholar 

  10. Klein RL et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998; 150: 183–194.

    Article  CAS  PubMed  Google Scholar 

  11. Tsai TH et al. Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Exp Neurol 2000; 166: 266–275.

    Article  CAS  PubMed  Google Scholar 

  12. Caleo M et al. Expression of BCL-2 via adeno-associated virus vectors rescues thalamic neurons after visual cortex lesion in the adult rat. Eur J Neurosci 2002; 15: 1271–1277.

    Article  PubMed  Google Scholar 

  13. Buchet D et al. Long-term expression of beta-glucuronidase by genetically modified human neural progenitor cells grafted into the mouse central nervous system. Mol Cell Neurosci 2002; 19: 389–401.

    Article  CAS  PubMed  Google Scholar 

  14. D'Costa J et al. HIV-2 derived lentiviral vectors: gene transfer in Parkinson's and Fabry disease models in vitro. J Med Virol 2003; 71: 173–182.

    Article  CAS  PubMed  Google Scholar 

  15. Jakobsson J et al. Targeted transgene expression in rat brain using lentiviral vectors. J Neurosci Res 2003; 73: 876–885.

    Article  CAS  PubMed  Google Scholar 

  16. de Almeida LP et al. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 2002; 22: 3473–3483.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  19. Zou LL et al. Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Therapy 1999; 6: 994–1005.

    Article  CAS  PubMed  Google Scholar 

  20. Shi N et al. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 2001; 98: 12754–12759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wattiaux R et al. Cationic lipids delay the transfer of plasmid DNA to lysosomes. Biochem Biophys Res Commun 1996; 227: 448–454.

    Article  CAS  PubMed  Google Scholar 

  22. Khaw BA et al. Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release 2001; 75: 199–210.

    Article  CAS  PubMed  Google Scholar 

  23. Li S et al. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Therapy 1999; 6: 585–594.

    Article  CAS  PubMed  Google Scholar 

  24. Sakurai F et al. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Therapy 2001; 8: 677–686.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotech 1997; 15: 167–173.

    Article  CAS  Google Scholar 

  26. Brooks AI et al. Reproducible and efficient murine CNS gene delivery using a microprocessor-controlled injector. J Neurosci Methods 1998; 80: 137–147.

    Article  CAS  PubMed  Google Scholar 

  27. Imaoka T et al. In vivo gene transfer into the adult mammalian central nervous system by continuous injection of plasmid DNA-cationic liposome complex. Brain Res 1998; 780: 119–128.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y et al. CNS gene transfer mediated by a novel controlled release system based on DNA complexes of degradable polycation PPE-EA: a comparison with polyethylenimine/DNA complexes. Gene Therapy 2004; 11: 109–114.

    Article  CAS  PubMed  Google Scholar 

  29. Imaoka T, Date I, Ohmoto T, Nagatsu T . Significant behavioral recovery in Parkinson's disease model by direct intracerebral gene transfer using continuous injection of a plasmid DNA-liposome complex. Hum Gene Ther 1998; 9: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  30. Ong WY et al. Changes in glutathione in the hippocampus of rats injected with kainate: depletion in neurons and upregulation in glia. Exp Brain Res 2000; 132: 510–516.

    Article  CAS  PubMed  Google Scholar 

  31. Ferraguti F et al. Activated astrocytes in areas of kainate-induced neuronal injury upregulate the expression of the metabotropic glutamate receptors 2/3 and 5. Exp Brain Res 2001; 137: 1–11.

    Article  CAS  PubMed  Google Scholar 

  32. Alberch J, Perez-Navarro E, Canals JM . Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease. Brain Res Bull 2002; 57: 817–822.

    Article  CAS  PubMed  Google Scholar 

  33. Liu HM, Lei DL, Yang DL . Kainate-induced brain lesion: similar local and remote histopathological and molecular changes as in ischemic brain infarct. J Neuropathol Exp Neurol 1996; 55: 787–794.

    Article  CAS  PubMed  Google Scholar 

  34. de Lima MCP et al. Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol Membr Biol 1999; 16: 103–109.

    Article  CAS  PubMed  Google Scholar 

  35. Simoes S et al. Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Therapy 1998; 5: 955–964.

    Article  CAS  PubMed  Google Scholar 

  36. Simoes S et al. Successful transfection of lymphocytes by ternary lipoplexes. Biosci Rep 1999; 19: 601–609.

    Article  CAS  PubMed  Google Scholar 

  37. Simoes S et al. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Therapy 1999; 6: 1798–1807.

    Article  CAS  PubMed  Google Scholar 

  38. da Cruz MT, Simoes S, de Lima MC . Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp Neurol 2004; 187: 65–75.

    Article  PubMed  Google Scholar 

  39. Lin MT, Wang F, Uitto J, Yoon K . Differential expression of tissue-specific promoters by gene gun. Br J Dermatol 2001; 144: 34–39.

    Article  CAS  PubMed  Google Scholar 

  40. Douglas JL, Lin WY, Panis ML, Veres G . Efficient human immunodeficiency virus-based vector transduction of unstimulated human mobilized peripheral blood CD34+ cells in the SCID-hu Thy/Liv model of human T cell lymphopoiesis. Hum Gene Ther 2001; 12: 401–413.

    Article  CAS  PubMed  Google Scholar 

  41. de Almeida LP, Zala D, Aebischer P, Deglon N . Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease. Neurobiol Dis 2001; 8: 433–446.

    Article  CAS  PubMed  Google Scholar 

  42. Butcher SP, Bullock R, Graham DI, McCulloch J . Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 1990; 21: 1727–1733.

    Article  CAS  PubMed  Google Scholar 

  43. Massieu L, Gomez-Roman N, Montiel T . In vivo potentiation of glutamate-mediated neuronal damage after chronic administration of the glycolysis inhibitor iodoacetate. Exp Neurol 2000; 165: 257–267.

    Article  CAS  PubMed  Google Scholar 

  44. Obrenovitch TP, Urenjak J . Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 1997; 51: 39–87.

    Article  CAS  PubMed  Google Scholar 

  45. Kristian T, Siesjo BK . Calcium in ischemic cell death. Stroke 1998; 29: 705–718.

    Article  CAS  PubMed  Google Scholar 

  46. Limbrick Jr DD, Pal S, DeLorenzo RJ . Hippocampal neurons exhibit both persistent Ca2+ influx and impairment of Ca2+ sequestration/extrusion mechanisms following excitotoxic glutamate exposure. Brain Res 2001; 894: 56–67.

    Article  CAS  PubMed  Google Scholar 

  47. Brorson JR, Manzolillo PA, Miller RJ . Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J Neurosci 1994; 14: 187–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferreira IL, Duarte CB, Carvalho AP . Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death. Eur J Pharmacol 1996; 302: 153–162.

    Article  CAS  PubMed  Google Scholar 

  49. Santos AE, Carvalho AL, Lopes MC, Carvalho AP . Differential postreceptor signaling events triggered by excitotoxic stimulation of different ionotropic glutamate receptors in retinal neurons. J Neurosci Res 2001; 66: 643–655.

    Article  CAS  PubMed  Google Scholar 

  50. McLaughlin J et al. Sparing of neuronal function postseizure with gene therapy. Proc Natl Acad Sci USA 2000; 97: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Widenfalk J et al. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 2001; 21: 3457–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shinoura N et al. Adenovirus-mediated transfer of caspase-8 augments cell death in gliomas: implication for gene therapy. Hum Gene Ther 2000; 11: 1123–1137.

    Article  CAS  PubMed  Google Scholar 

  53. Elliger SS et al. Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Therapy 1999; 6: 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida J et al. Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther 2004; 15: 77–86.

    Article  CAS  PubMed  Google Scholar 

  55. Janson C et al. Clinical protocol Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 2002; 13: 1391–1412.

    Article  CAS  PubMed  Google Scholar 

  56. Mok KWC, Cullis PR . Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J 1997; 73: 2534–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thorne RG, Frey WH . Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2001; 40: 907–946.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Serrano A, Bjorklund A . Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging. Proc Natl Acad Sci USA 1998; 95: 1858–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen KS, Gage FH . Somatic gene transfer of NGF to the aged brain – Behavioral and morphological amelioration. J Neurosci 1995; 15: 2819–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gouhier C et al. Neuroprotection of nerve growth factor-loaded microspheres on the D2 dopaminergic receptor positive-striatal neurones in quinolinic acid-lesioned rats: a quantitative autoradiographic assessment with iodobenzamide. Neurosci Lett 2000; 288: 71–75.

    Article  CAS  PubMed  Google Scholar 

  61. Martinez-Serrano A, Bjorklund A . Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. J Neurosci 1996; 16: 4604–4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perez-Navarro E, Alberch J . Protective role of nerve growth factor against excitatory amino acid injury during neostriatal cholinergic neurons postnatal development. Exp Neurol 1995; 135: 146–152.

    Article  CAS  PubMed  Google Scholar 

  63. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press Inc.: San Diego, 1986.

    Google Scholar 

  64. Lin TN et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 1993; 24: 117–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Patrick Aebischer, Institut des Neurosciences, École Polytechnique de Lausanne, Lausanne, Switzerland, for providing the pSIN-PGK-nls-LacZ-WHV plasmid, and Dr Robert Debs, California Pacific Medical Center Research Institute, San Francisco, USA, for the pCMV-NGF plasmid generous gift. We are grateful to Professor Tice Macedo and to Frederico Pereira for providing access to the stereotactic frame used throughout this study. M Teresa Girão da Cruz was the recipient of a fellowship from the Portuguese Foundation for Science and Technology (PRAXIS XXI/BD/19529/99). This work was partially financed by a grant from the Portuguese Foundation for Science and Technology (FCT/BIO/36202/00).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teresa Girão da Cruz, M., Cardoso, A., de Almeida, L. et al. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 12, 1242–1252 (2005). https://doi.org/10.1038/sj.gt.3302516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302516

Keywords

This article is cited by

Search

Quick links