Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mapping candidate non-MHC susceptibility regions to multiple sclerosis

Abstract

Understanding the genetic basis of multiple sclerosis (MS) remains a major challenge, despite decades of intensive research. In order to identify candidate non-MHC susceptibility regions to MS, the results of whole genome screens for linkage or association and follow-up studies in 18 different populations were superimposed together in a combined genomic map. Analysis of this map led to the prediction of at least 38 potential susceptibility regions, each showing linkage and/or association in several populations. Among these, 17 regions were the most reproducibly reported in these studies, thus representing top predicted candidates for MS. This non-formal approach to meta-analysis demonstrated the ability to verify results and retrieve lost information in an association study. Assessment of the map in a Northern Irish refined screen (n=415 cases, n=490 controls) revealed association in 15 regions (P<0.05), including 10 promising candidates on chromosomes 1p13, 2p13, 2q14, 3p23, 7q21, 13q14, 15q13, 17p13, 18q21 and 20p12 (P<0.0025). Seven of these regions were previously overlooked in the Northern Irish whole genome association study. Collating results from numerous studies, this draft map represents a tool that should facilitate the analysis of the genetic backgrounds of MS in many populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jersild C, Svejgaard A, Fog T . HLA antigens and multiple sclerosis. Lancet 1972; 2: 1240–1241.

    Article  Google Scholar 

  2. Haines J, Pericak-Vance M, Seboun E, Hauser S, the Multiple Sclerosis Genetics Group. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nat Genet 1996; 13: 469–471.

    Article  CAS  PubMed  Google Scholar 

  3. Kenealy SJ, Babron MC, Bradford Y, Schnetz-Boutaud N, Haines JL, Rimmler JB, et al. (American-French Multiple Sclerosis Genetics Group). A second-generation genomic screen for multiple sclerosis. Am J Hum Genet 2004; 75 (6): 1070–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ban M, Stewart GJ, Bennetts BH, Heard R, Simmons R, Maranian M et al. A genome screen for linkage in Australian sibling-pairs with multiple sclerosis. Genes Immun 2002; 3: 464–469.

    Article  CAS  PubMed  Google Scholar 

  5. Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464–468.

    Article  CAS  PubMed  Google Scholar 

  6. Hensiek AE, Roxburgh R, Smilie B, Coraddu F, Akesson E, Holmans P et al. Updated results of the United Kingdom linkage-based genome screen in multiple sclerosis. J Neuroimmunol 2003; 143: 25–30.

    Article  CAS  PubMed  Google Scholar 

  7. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472–476.

    Article  CAS  PubMed  Google Scholar 

  8. Dyment DA, Sadovnick AD, Willer CJ, Armstrong H, Cader ZM, Wiltshire S, et al. (Canadian Collaborative Study Group). An extended genome scan in 442 Canadian multiple sclerosis-affected sibships: a report from the Canadian Collaborative Study Group. Hum Mol Genet 2004; 13 (10): 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  9. Kuokkanen S, Gschwend M, Rioux JD, Daly MJ, Terwilliger JD, Tienari PJ et al. Genome wide scan of multiple sclerosis in Finnish multiplex families. Am J Hum Genet 1997; 61 (6): 1379–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Broadley S, Sawcer S, D’Alfonso S, Hensiek A, Coraddu F, Gray J et al. A genome screen for multiple sclerosis in Italian families. Gene Immun 2001; 4: 205–210.

    Article  Google Scholar 

  11. Coraddu F, Sawcer S, D’Alfonso S, Lai M, Hensiek A, Solla E et al. A genome screen for multiple sclerosis in Sardinian multiplex families. Eur J Hum Genet 2001; 19: 621–626.

    Article  Google Scholar 

  12. Akesson E, Oturai A, Berg J, Fredrikson S, Andersen O, Harbo HF et al. A genome-wide screen for linkage in Nordic sib-pairs with multiple sclerosis. Genes Immun 2002; 3: 279–285.

    Article  CAS  PubMed  Google Scholar 

  13. Eraksoy M, Kurtuncu M, Akman-Demir G, Kilinc M, Gedizlioglu M, Mirza M, et al. (Turkish Multiple Sclerosis Genetics Study Group). A whole genome screen for linkage in Turkish multiple sclerosis. J Neuroimmunol 2003; 143: 17–24.

    Article  CAS  PubMed  Google Scholar 

  14. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, et al. (for The International Multiple Sclerosis Genetics Consortium). A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454–467.

    Article  PubMed  Google Scholar 

  15. The Genetic Analysis of Multiple sclerosis in EuropeanS. GAMES. J Neuroimmunol 2003; 143: 1–140.

  16. GAMES. Transatlantic Multiple Sclerosis Genetics Cooperative. A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143 (1–2): 39–46.

  17. Fernald GH, Yeh RF, Hauser SL, Oksenberg JR, Baranzini SE . Mapping gene activity in complex disorders: Integration of expression and genomic scans for multiple sclerosis. J Neuroimmunol 2005; 167 (1–2): 57–169.

    Google Scholar 

  18. Suh Y, Vijg J . SNP discovery in associating genetic variation with human disease phenotypes. Mutat Res 2005; 573 (1–2): 41–53.

    Article  CAS  PubMed  Google Scholar 

  19. Newton-Cheh C, Hirschhorn JN . Genetic association studies of complex traits: design and analysis issues. Mutat Res 2005; 573 (1–2): 54–69.

    Article  CAS  PubMed  Google Scholar 

  20. Haines JL, Bradford Y, Garcia ME, Reed AD, Neumeister E, Pericak-Vance MA, et al., (Multiple Sclerosis Genetics Group). Multiple susceptibility loci for multiple sclerosis. Hum Mol Genet 2002; 11 (19): 2251–2256.

    Article  CAS  PubMed  Google Scholar 

  21. Pericak-Vance MA, Rimmler JB, Haines JL, Garcia ME, Oksenberg JR, Barcellos LF et al. Investigation of seven proposed regions of linkage in multiple sclerosis: an American and French collaborative study. Neurogenetics 2004; 5 (1): 45–48.

    Article  PubMed  Google Scholar 

  22. Kenealy SJ, Herrel LA, Bradford Y, Schnetz-Boutaud N, Oksenberg JR, Hauser SL et al. Examination of seven candidate regions for multiple sclerosis: strong evidence of linkage to chromosome 1q44. Genes Immun 2006; 7 (1): 73–76.

    Article  CAS  PubMed  Google Scholar 

  23. Chataway J, Feakes R, Coraddu F, Gray J, Deans J, Fraser M et al. The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain 1998; 121 (Part 10): 1869–1887.

    Article  PubMed  Google Scholar 

  24. Dyment DA, Willer CJ, Scott B, Armstrong H, Ligers A, Hillert J et al. Genetic susceptibility to MS: a second stage analysis in Canadian MS families. Neurogenetics 2001; 3 (3): 145–151.

    Article  CAS  PubMed  Google Scholar 

  25. D’Alfonso S, Nistico L, Zavattari P, Marrosu MG, Murru R, Lai M et al. Linkage analysis of multiple sclerosis with candidate region markers in Sardinian and Continental Italian families. Eur J Hum Genet 1999; 7 (3): 377–385.

    Article  PubMed  Google Scholar 

  26. Sawcer S, Maranian M, Setakis E, Curwen V, Akesson E, Hensiek A et al. A whole genome screen for linkage disequilibrium in multiple sclerosis confirms disease associations with regions previously linked to susceptibility. Brain 2002; 125 (Part 6): 1337–1347.

    Article  PubMed  Google Scholar 

  27. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227–231.

    Article  CAS  PubMed  Google Scholar 

  28. Mcdonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50 (1): 121–127.

    Article  CAS  PubMed  Google Scholar 

  29. Sham PC, Curtis D . Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 1995; 59: 97–105.

    Article  CAS  PubMed  Google Scholar 

  30. Heggarty S, Sawcer S, Hawkins S, McDonnell G, Droogan A, Vandenbroeck K et al. A genome wide scan for association with multiple sclerosis in a N. Irish case control population. J Neuroimmunol 2003; 143 (1–2): 93–96.

    Article  CAS  PubMed  Google Scholar 

  31. Villoslada P, Barcellos LF, Oksenberg JR . Chromosome 7q21-22 and multiple sclerosis. J Neuroimmunol 2004; 150 (1–2): 1–2.

    Article  CAS  PubMed  Google Scholar 

  32. Tishkoff SA, Verrelli BC . Role of evolutionary history on haplotype block structure in the human genome: implications for disease mapping. Curr Opin Genet Dev 2003; 13 (6): 569–575.

    Article  CAS  PubMed  Google Scholar 

  33. Oksenberg JR, Barcellos LF . Multiple sclerosis genetics: leaving no stone unturned. Genes Immun 2005; 6 (5): 375–387.

    Article  CAS  PubMed  Google Scholar 

  34. McGuigan C, Dunne C, Crowley J, Hagan R, Rooney G, Lawlor E et al. Population frequency of HLA haplotypes contributes to the prevalence difference of multiple sclerosis in Ireland. J Neurol 2005; 252 (10): 1245–1248.

    Article  CAS  PubMed  Google Scholar 

  35. Barcellos LF, Thomson G . Genetic analysis of multiple sclerosis in Europeans. J Neuroimmunol 2003; 143 (1–2): 1–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  37. Godde R, Rohde K, Becker C, Toliat MR, Entz P, Suk A et al. Association of the HLA region with multiple sclerosis as confirmed by a genome screen using &gt;10,000 SNPs on DNA chips. J Mol Med 2005; 83 (6): 486–494.

    Article  PubMed  Google Scholar 

  38. Larsen F, Oturai A, Ryder LP, Madsen HO, Hillert J, Fredrikson S et al. Linkage analysis of a candidate region in Scandinavian sib pairs with multiple sclerosis reveals linkage to chromosome 17q. Genes Immun 2000; 1 (7): 456–459.

    Article  CAS  PubMed  Google Scholar 

  39. Saarela J, Schoenberg Fejzo M, Chen D, Finnila S, Parkkonen M, Kuokkanen S et al. Fine mapping of a multiple sclerosis locus to 2.5 Mb on chromosome 17q22-q24. Hum Mol Genet 2002; 11 (19): 2257–2267.

    Article  CAS  PubMed  Google Scholar 

  40. Pericak-Vance MA, Rimmler JB, Martin ER, Haines JL, Garcia ME, Oksenberg JR et al. Linkage and association analysis of chromosome 19q13 in multiple sclerosis. Neurogenetics 2001; 3 (4): 195–201.

    Article  CAS  PubMed  Google Scholar 

  41. Brand O, Gough S, Heward J . HLA, CTLA-4 and PTPN22: the shared genetic master-key to autoimmunity? Expert Rev Mol Med 2005; 7 (23): 1–15.

    Article  PubMed  Google Scholar 

  42. McDonnell GV, Kirk CW, Middleton D, Droogan AG, Hawkins SA, Patterson CC et al. Genetic association studies of tumour necrosis factor alpha and beta and tumour necrosis factor receptor 1 and 2 polymorphisms across the clinical spectrum of multiple sclerosis. J Neurol 1999; 246 (11): 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  43. Ramer MS, Priestley JV, McMahon SB . Functional regeneration of sensory axons into the adult spinal cord. Nature 2000; 403: 312–316.

    Article  CAS  PubMed  Google Scholar 

  44. Criswell LA, Pfeiffer K A, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the Multiple Autoimmune Disease Genetics Consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C . F3/contactin. A neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell 2002; 94 (6): 327–334.

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susaria S et al. Nicotinic acetylcholine receptor alpha-7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384–388.

    Article  CAS  PubMed  Google Scholar 

  47. Li W, Lee J, Vikis HG, Lee SH, Liu G, Aurandt J et al. Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat Neurosci 2004; 7: 1213–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ronn LC, Berezin V, Bock E . The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 2000; 18 (2–3): 193–199.

    Article  CAS  PubMed  Google Scholar 

  49. McFarlane S . Metalloproteases: carving out a role in axon guidance. Neuron 2003; 37 (4): 559–562.

    Article  CAS  PubMed  Google Scholar 

  50. Carim-Todd L, Escarceller M, Estivill X, Sumoy L . LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci 2003; 18 (12): 3167–3182.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants for contributing DNA samples to the study. This work was supported by MS Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdeen, H., Heggarty, S., Hawkins, S. et al. Mapping candidate non-MHC susceptibility regions to multiple sclerosis. Genes Immun 7, 494–502 (2006). https://doi.org/10.1038/sj.gene.6364320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364320

Keywords

This article is cited by

Search

Quick links