Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Susceptibility to JRA/JIA: complementing general autoimmune and arthritis traits

Abstract

Juvenile rheumatoid arthritis (JRA), also known as juvenile idiopathic arthritis (JIA), includes the most common chronic autoimmune arthropathies of childhood. These two nomenclatures for classification include components representing the major subclasses of disease. The chromosomal regions and the genes involved in these complex genetic traits are being elucidated, with findings often specific for a particular disease subtype. With the advent of new SNP technologies, progress is being made at an ever-increasing pace. This review discusses the difficulties of deciphering the genetic components in complex disorders, while demonstrating the similarities that JRA shares with other autoimmune disorders. Particular emphasis has been placed on positive findings either for candidate genes that have been replicated independently in JRA/JIA, or findings in JRA for which consistent results have been reported in other forms of autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Cassidy JT, Petty RE, Laxer RM, Lindsley CB (eds). Textbook of Pediatric Rheumatology, 5th edn. Elsevier Saunders Company: Philadelphia, 2005.

    Google Scholar 

  2. Brewer Jr EJ, Bass J, Baum J, Cassidy JT, Fink C, Jacobs J et al. Current proposed revision of JRA Criteria. JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Section of The Arthritis Foundation. Arthritis Rheum 1977; 20 (Suppl 2): 195–199.

    PubMed  Google Scholar 

  3. European League Against Rheumatism. EULAR Bulletin No. 4: Nomenclature and Classification of Arthritis in Children. National Zeitung AG: Basel, 1977.

  4. Fink CW . Proposal for the development of classification criteria for idiopathic arthritides of childhood. J Rheumatol 1995; 22: 1566–1569.

    CAS  PubMed  Google Scholar 

  5. Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol 1998; 25: 1991–1994.

    CAS  PubMed  Google Scholar 

  6. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 2004; 31: 390–392.

    PubMed  Google Scholar 

  7. Shimizu T, Hizawa N, Honda A, Zhao Y, Abe R, Watanabe H et al. Promoter region polymorphism of macrophage migration inhibitory factor is strong risk factor for young onset of extensive alopecia areata. Genes Immun 2005; 6: 285–289.

    CAS  PubMed  Google Scholar 

  8. Donn R, Alourfi Z, De Benedetti F, Meazza C, Zeggini E, Lunt M et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum 2002; 46: 2402–2409.

    CAS  PubMed  Google Scholar 

  9. Donn R, Alourfi Z, Zeggini E, Lamb R, Jury F, Lunt M et al. A functional promoter haplotype of macrophage migration inhibitory factor is linked and associated with juvenile idiopathic arthritis. Arthritis Rheum 2004; 50: 1604–1610.

    PubMed  Google Scholar 

  10. Miterski B, Drynda S, Boschow G, Klein W, Oppermann J, Kekow J et al. Complex genetic predisposition in adult and juvenile rheumatoid arthritis. BMC Genet 2004; 5: 2.

    PubMed  PubMed Central  Google Scholar 

  11. Nohara H, Okayama N, Inoue N, Koike Y, Fujimura K, Suehiro Y et al. Association of the −173 G/C polymorphism of the macrophage migration inhibitory factor gene with ulcerative colitis. J Gastroenterol 2004; 39: 242–246.

    CAS  PubMed  Google Scholar 

  12. Donner H, Braun J, Seidl C, Rau H, Finke R, Ventz M et al. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto's thyroiditis and Addison's disease. J Clin Endocrinol Metab 1997; 82: 4130–4132.

    CAS  PubMed  Google Scholar 

  13. Kemp EH, Ajjan RA, Husebye ES, Peterson P, Uibo R, Imrie H et al. A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison's disease in English patients. Clin Endocrinol (Oxford) 1998; 49: 609–613.

    CAS  Google Scholar 

  14. Kotsa K, Watson PF, Weetman AP . A CTLA-4 gene polymorphism is associated with both Graves disease and autoimmune hypothyroidism. Clin Endocrinol (Oxford) 1997; 46: 551–554.

    CAS  Google Scholar 

  15. Nithiyananthan R, Heward JM, Allahabadia A, Franklyn JA, Gough SC . Polymorphism of the CTLA-4 gene is associated with autoimmune hypothyroidism in the United Kingdom. Thyroid 2002; 12: 3–6.

    CAS  PubMed  Google Scholar 

  16. Djilali-Saiah I, Schmitz J, Harfouch-Hammoud E, Mougenot JF, Bach JF, Caillat-Zucman S . CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. Gut 1998; 43: 187–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maurer M, Ponath A, Kruse N, Rieckmann P . CTLA4 exon 1 dimorphism is associated with primary progressive multiple sclerosis. J Neuroimmunol 2002; 131: 213–215.

    CAS  PubMed  Google Scholar 

  18. Agarwal K, Jones DE, Daly AK, James OF, Vaidya B, Pearce S et al. CTLA-4 gene polymorphism confers susceptibility to primary biliary cirrhosis. J Hepatol 2000; 32: 538–541.

    CAS  PubMed  Google Scholar 

  19. Vaidya B, Pearce SH, Charlton S, Marshall N, Rowan AD, Griffiths ID et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology (Oxford) 2002; 41: 180–183.

    CAS  Google Scholar 

  20. Lee CS, Lee YJ, Liu HF, Su CH, Chang SC, Wang BR et al. Association of CTLA4 gene A-G polymorphism with rheumatoid arthritis in Chinese. Clin Rheumatol 2003; 22: 221–224.

    PubMed  Google Scholar 

  21. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW et al. Replication of putative candidate–gene associations with rheumatoid arthritis in >4000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barreto M, Santos E, Ferreira R, Fesel C, Fontes MF, Pereira C et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur J Hum Genet 2004; 12: 620–626.

    CAS  PubMed  Google Scholar 

  23. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hinks A, Barton A, John S, Bruce I, Hawkins C, Griffiths CE et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 2005; 52: 1694–1699.

    CAS  PubMed  Google Scholar 

  25. Seldin MF, Shigeta R, Laiho K, Li H, Saila H, Savolainen A et al. Finnish case–control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun 2005; 8: 720–722.

    Google Scholar 

  26. Kawasaki A, Tsuchiya N, Hagiwara K, Takazoe M, Tokunaga K . Independent contribution of HLA-DRB1 and TNF alpha promoter polymorphisms to the susceptibility to Crohn's disease. Genes Immun 2000; 1: 351–357.

    CAS  PubMed  Google Scholar 

  27. Date Y, Seki N, Kamizono S, Higuchi T, Hirata T, Miyata K et al. Identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5′-flanking region of the TNFalpha gene and HLA genes. Arthritis Rheum 1999; 42: 2577–2582.

    CAS  PubMed  Google Scholar 

  28. Nikitina Zake L, Cimdina I, Rumba I, Dabadghao P, Sanjeevi CB . Major histocompatibility complex class I chain related (MIC) A gene, TNFa microsatellite alleles and TNFB alleles in juvenile idiopathic arthritis patients from Latvia. Hum Immunol 2002; 63: 418–423.

    CAS  PubMed  Google Scholar 

  29. Hajeer AH, Dababneh A, Makki RF, Thomson W, Poulton K, Gonzalez-Gay MA et al. Different gene loci within the HLA-DR and TNF regions are independently associated with susceptibility and severity in Spanish rheumatoid arthritis patients. Tissue Antigens 2000; 55: 319–325.

    CAS  PubMed  Google Scholar 

  30. Hofmeister A, Neibergs HL, Pokorny RM, Galandiuk S . The natural resistance-associated macrophage protein gene is associated with Crohn's disease. Surgery 1997; 122: 173–178; discussion 178–179.

    CAS  PubMed  Google Scholar 

  31. Sanjeevi CB, Miller EN, Dabadghao P, Rumba I, Shtauvere A, Denisova A et al. Polymorphism at NRAMP1 and D2S1471 loci associated with juvenile rheumatoid arthritis. Arthritis Rheum 2000; 43: 1397–1404.

    CAS  PubMed  Google Scholar 

  32. Runstadler JA, Saila H, Savolainen A, Leirisalo-Repo M, Aho K, Tuomilehto-Wolf E et al. Association of SLC11A1 (NRAMP1) with persistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum 2005; 52: 247–256.

    CAS  PubMed  Google Scholar 

  33. Shaw MA, Clayton D, Atkinson SE, Williams H, Miller N, Sibthorpe D et al. Linkage of rheumatoid arthritis to the candidate gene NRAMP1 on 2q35. J Med Genet 1996; 33: 672–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Esposito L, Hill NJ, Pritchard LE, Cucca F, Muxworthy C, Merriman ME et al. Genetic analysis of chromosome 2 in type 1 diabetes: analysis of putative loci IDDM7, IDDM12, and IDDM13 and candidate genes NRAMP1 and IA-2 and the interleukin-1 gene cluster. IMDIAB Group. Diabetes 1998; 47: 1797–1799.

    CAS  PubMed  Google Scholar 

  35. Donn RP, Barrett JH, Farhan A, Stopford A, Pepper L, Shelley E et al. Cytokine gene polymorphisms and susceptibility to juvenile idiopathic arthritis. British Paediatric Rheumatology Study Group. Arthritis Rheum 2001; 44: 802–810.

    CAS  PubMed  Google Scholar 

  36. McDowell TL, Symons JA, Ploski R, Forre O, Duff GW . A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum 1995; 38: 221–228.

    CAS  PubMed  Google Scholar 

  37. Cox A, Camp NJ, Cannings C, di Giovine FS, Dale M, Worthington J et al. Combined sib-TDT and TDT provide evidence for linkage of the interleukin-1 gene cluster to erosive rheumatoid arthritis. Hum Mol Genet 1999; 8: 1707–1713.

    CAS  PubMed  Google Scholar 

  38. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102: 1369–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogilvie EM, Fife MS, Thompson SD, Twine N, Tsoras M, Moroldo M et al. The −174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum 2003; 48: 3202–3206.

    CAS  PubMed  Google Scholar 

  40. Jahromi MM, Millward BA, Demaine AG . A polymorphism in the promoter region of the gene for interleukin-6 is associated with susceptibility to type 1 diabetes mellitus. J Interferon Cytokine Res 2000; 20: 885–888.

    CAS  PubMed  Google Scholar 

  41. Schotte H, Schluter B, Rust S, Assmann G, Domschke W, Gaubitz M . Interleukin-6 promoter polymorphism (−174 G/C) in Caucasian German patients with systemic lupus erythematosus. Rheumatology (Oxford) 2001; 40: 393–400.

    CAS  Google Scholar 

  42. Glass DN, Giannini EH . Juvenile rheumatoid arthritis as a complex genetic trait. Arthritis Rheum 1999; 42: 2261–2268.

    CAS  PubMed  Google Scholar 

  43. Donn RP, Ollier WE . Juvenile chronic arthritis – a time for change? Eur J Immunogenet 1996; 23: 245–260.

    CAS  PubMed  Google Scholar 

  44. Moroldo MB, Chaudhari M, Shear E, Thompson SD, Glass DN, Giannini EH . Juvenile rheumatoid arthritis affected sibpairs: extent of clinical phenotype concordance. Arthritis Rheum 2004; 50: 1928–1934.

    PubMed  Google Scholar 

  45. Prahalad S, Ryan MH, Shear ES, Thompson SD, Giannini EH, Glass DN . Juvenile rheumatoid arthritis: linkage to HLA demonstrated by allele sharing in affected sibpairs. Arthritis Rheum 2000; 43: 2335–2338.

    CAS  PubMed  Google Scholar 

  46. Cunningham F, MacDonald P, Gant N, Leveno K, Gilstrap L, Hankins G et al. Williams Obstetrics, 20th edn. Stamford, CT: Appleton & Lange, 1997.

    Google Scholar 

  47. Prahalad S, Shear ES, Thompson SD, Giannini EH, Glass DN . Increased prevalence of familial autoimmunity in simplex and multiplex families with juvenile rheumatoid arthritis. Arthritis Rheum 2002; 46: 1851–1856.

    PubMed  Google Scholar 

  48. Simmonds MJ, Gough SC . Genetic insights into disease mechanisms of autoimmunity. Br Med Bull 2004; 71: 93–113.

    CAS  PubMed  Google Scholar 

  49. Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun 2002; 3: 170–176.

    CAS  PubMed  Google Scholar 

  50. Gregersen PK, Bucala R . Macrophage migration inhibitory factor, MIF alleles, and the genetics of inflammatory disorders: incorporating disease outcome into the definition of phenotype. Arthritis Rheum 2003; 48: 1171–1176.

    CAS  PubMed  Google Scholar 

  51. Cvetkovic I, Al-Abed Y, Miljkovic D, Maksimovic-Ivanic D, Roth J, Bacher M et al. Critical role macrophage migration inhibitory factor (MIF) activity in experimental autoimmune diabetes. Endocrinology 2005; 146: 2942–2951.

    CAS  PubMed  Google Scholar 

  52. Lan HY, Bacher M, Yang N, Mu W, Nikolic-Paterson DJ, Metz C et al. The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J Exp Med 1997; 185: 1455–1465.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsui Y, Okamoto H, Jia N, Akino M, Uede T, Kitabatake A et al. Blockade of macrophage migration inhibitory factor ameliorates experimental autoimmune myocarditis. J Mol Cell Cardiol 2004; 37: 557–566.

    CAS  PubMed  Google Scholar 

  54. De Benedetti F, Meazza C, Vivarelli M, Rossi F, Pistorio A, Lamb R et al. Functional and prognostic relevance of the −173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 2003; 48: 1398–1407.

    CAS  PubMed  Google Scholar 

  55. Radstake TR, Sweep FC, Welsing P, Franke B, Vermeulen SH, Geurts-Moespot A et al. Correlation of rheumatoid arthritis severity with the genetic functional variants and circulating levels of macrophage migration inhibitory factor. Arthritis Rheum 2005; 52: 3020–3029.

    CAS  PubMed  Google Scholar 

  56. Gough SC, Walker LS, Sansom DM . CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005; 204: 102–115.

    CAS  PubMed  Google Scholar 

  57. Prahalad S, Honeggar M, Thompson S, Glass D, Bohnsack J, Bamshad M . Lack of association of CTLA4 polymorphisms with juvenile rheumatoid arthritis. Arthritis Rheum 2005; 52: S302.

    Google Scholar 

  58. Heward JM, Allahabadia A, Carr-Smith J, Daykin J, Cockram CS, Gordon C et al. No evidence for allelic association of a human CTLA-4 promoter polymorphism with autoimmune thyroid disease in either population-based case–control or family-based studies. Clin Endocrinol (Oxford) 1998; 49: 331–334.

    CAS  Google Scholar 

  59. Braun J, Donner H, Siegmund T, Walfish PG, Usadel KH, Badenhoop K . CTLA-4 promoter variants in patients with Graves' disease and Hashimoto's thyroiditis. Tissue Antigens 1998; 51: 563–566.

    CAS  PubMed  Google Scholar 

  60. Cloutier JF, Veillette A . Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 1999; 189: 111–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gregorieff A, Cloutier JF, Veillette A . Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 1998; 273: 13217–13222.

    CAS  PubMed  Google Scholar 

  62. Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC . PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 2004; 303: 685–689.

    CAS  PubMed  Google Scholar 

  63. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    CAS  PubMed  Google Scholar 

  64. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Viken MK, Amundsen SS, Kvien TK, Boberg KM, Gilboe IM, Lilleby V et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun 2005; 6: 271–273.

    CAS  PubMed  Google Scholar 

  66. Gregersen PK . Pathways to gene identification in rheumatoid arthritis: PTPN22 and beyond. Immunol Rev 2005; 204: 74–86.

    CAS  PubMed  Google Scholar 

  67. Carlton VE, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 2005; 77: 567–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Grom AA, Hirsch R . T-cell and T-cell receptor abnormalities in the immunopathogenesis of juvenile rheumatoid arthritis. Curr Opin Rheumatol 2000; 12: 420–424.

    CAS  PubMed  Google Scholar 

  69. Wilkinson N, Jackson G, Gardner-Medwin J . Biologic therapies for juvenile arthritis. Arch Dis Child 2003; 88: 186–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Grom AA, Murray KJ, Luyrink L, Emery H, Passo MH, Glass DN et al. Patterns of expression of tumor necrosis factor alpha, tumor necrosis factor beta, and their receptors in synovia of patients with juvenile rheumatoid arthritis and juvenile spondylarthropathy. Arthritis Rheum 1996; 39: 1703–1710.

    CAS  PubMed  Google Scholar 

  71. Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J . Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci USA 2005; 102: 3372–3377.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Murray KJ, Lovell DJ . Advanced therapy for juvenile arthritis. Best Pract Res Clin Rheumatol 2002; 16: 361–378.

    CAS  PubMed  Google Scholar 

  73. Hehlgans T, Pfeffer K . The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 2005; 115: 1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Epplen C, Rumpf H, Albert E, Haas P, Truckenbrodt H, Epplen JT . Immunoprinting excludes many potential susceptibility genes as predisposing to early onset pauciarticular juvenile chronic arthritis except HLA class II and TNF. Eur J Immunogenet 1995; 22: 311–322.

    CAS  PubMed  Google Scholar 

  75. Mangge H, Kenzian H, Gallistl S, Neuwirth G, Liebmann P, Kaulfersch W et al. Serum cytokines in juvenile rheumatoid arthritis. Correlation with conventional inflammation parameters and clinical subtypes. Arthritis Rheum 1995; 38: 211–220.

    CAS  PubMed  Google Scholar 

  76. Rooney M, David J, Symons J, Di Giovine F, Varsani H, Woo P . Inflammatory cytokine responses in juvenile chronic arthritis. Br J Rheumatol 1995; 34: 454–460.

    CAS  PubMed  Google Scholar 

  77. Ozen S, Alikasifoglu M, Bakkaloglu A, Duzova A, Jarosova K, Nemcova D et al. Tumour necrosis factor alpha G → A −238 and G → A −308 polymorphisms in juvenile idiopathic arthritis. Rheumatology (Oxford) 2002; 41: 223–227.

    CAS  Google Scholar 

  78. Zeggini E, Thomson W, Kwiatkowski D, Richardson A, Ollier W, Donn R . Linkage and association studies of single-nucleotide polymorphism-tagged tumor necrosis factor haplotypes in juvenile oligoarthritis. Arthritis Rheum 2002; 46: 3304–3311.

    CAS  PubMed  Google Scholar 

  79. Blackwell JM . Structure and function of the natural-resistance-associated macrophage protein (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. Mol Med Today 1996; 2: 205–211.

    CAS  PubMed  Google Scholar 

  80. Blackwell JM, Searle S, Mohamed H, White JK . Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol Lett 2003; 85: 197–203.

    CAS  PubMed  Google Scholar 

  81. Searle S, Blackwell JM . Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 1999; 36: 295–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. McElligott DL, Phillips JA, Stillman CA, Koch RJ, Mosier DE, Hobbs MV . CD4+ T cells from IRF-1-deficient mice exhibit altered patterns of cytokine expression and cell subset homeostasis. J Immunol 1997; 159: 4180–4186.

    CAS  PubMed  Google Scholar 

  83. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993; 75: 83–97.

    CAS  PubMed  Google Scholar 

  84. Giannouli S, Tzoanopoulos D, Ritis K, Kartalis G, Moutsopoulos HM, Voulgarelis M . Autoimmune manifestations in human myelodysplasia: a positive correlation with interferon regulatory factor-1 (IRF-1) expression. Ann Rheum Dis 2004; 63: 578–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vandenbroeck K, Hardt C, Louage J, Fiten P, Jackel S, Ronsse I et al. Lack of association between the interferon regulatory factor-1 (IRF1) locus at 5q31.1 and multiple sclerosis in Germany, northern Italy, Sardinia and Sweden. Genes Immun 2000; 1: 290–292.

    CAS  PubMed  Google Scholar 

  86. Johannesen J, Karlsen AE, Nerup J, Pociot F . No association or linkage to IDDM of an interferon regulatory factor-1 gene polymorphism in a Danish population. The Danish Study Group for Diabetes in Childhood. Eur J Immunogenet 1997; 24: 377–383.

    CAS  PubMed  Google Scholar 

  87. Donn RP, Farhan AJ, Barrett JH, Thomson W, Worthington J, Ollier WE . Absence of association between interleukin 1 alpha and oligoarticular juvenile chronic arthritis in UK patients. Rheumatology (Oxford) 1999; 38: 171–175.

    CAS  Google Scholar 

  88. Bennermo M, Held C, Stemme S, Ericsson CG, Silveira A, Green F et al. Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem 2004; 50: 2136–2140.

    CAS  PubMed  Google Scholar 

  89. de Benedetti F, Massa M, Robbioni P, Ravelli A, Burgio GR, Martini A . Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum 1991; 34: 1158–1163.

    CAS  PubMed  Google Scholar 

  90. Murray KJ, Moroldo MB, Donnelly P, Prahalad S, Passo MH, Giannini EH et al. Age-specific effects of juvenile rheumatoid arthritis-associated HLA alleles. Arthritis Rheum 1999; 42: 1843–1853.

    CAS  PubMed  Google Scholar 

  91. Thompson SD, Moroldo MB, Guyer L, Ryan M, Tombragel EM, Shear ES et al. A genome-wide scan for juvenile rheumatoid arthritis in affected sibpair families provides evidence of linkage. Arthritis Rheum 2004; 50: 2920–2930.

    CAS  PubMed  Google Scholar 

  92. Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14869–14874.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Coraddu F, Sawcer S, D'Alfonso S, Lai M, Hensiek A, Solla E et al. A genome screen for multiple sclerosis in Sardinian multiplex families. Eur J Hum Genet 2001; 9: 621–626.

    CAS  PubMed  Google Scholar 

  94. Johanneson B, Lima G, von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME . A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 2002; 71: 1060–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gaffney PM, Kearns GM, Shark KB, Ortmann WA, Selby SA, Malmgren ML et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci USA 1998; 95: 14875–14879.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shai R, Quismorio Jr FP, Li L, Kwon OJ, Morrison J, Wallace DJ et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999; 8: 639–644.

    CAS  PubMed  Google Scholar 

  97. Liu J, Juo SH, Holopainen P, Terwilliger J, Tong X, Grunn A et al. Genomewide linkage analysis of celiac disease in Finnish families. Am J Hum Genet 2002; 70: 51–59.

    CAS  PubMed  Google Scholar 

  98. Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 1998; 95: 7502–7507.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cornelis F, Faure S, Martinez M, Prud'homme JF, Fritz P, Dib C et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10746–10750.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shiozawa S, Hayashi S, Tsukamoto Y, Goko H, Kawasaki H, Wada T et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int Immunol 1998; 10: 1891–1895.

    CAS  PubMed  Google Scholar 

  101. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998; 95: 9979–9984.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Arthritis ans Musuloskeletal and Skin Diseases (grants N01-AR-42218, P30-AR-47363, and P60-AR-47782) and the Children's Hospital Research Foundation. We appreciate the support of Mrs Mary Kinsella and the other team members in the lab of the William S Rowe Division of Rheumatology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Glass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelan, J., Thompson, S. & Glass, D. Susceptibility to JRA/JIA: complementing general autoimmune and arthritis traits. Genes Immun 7, 1–10 (2006). https://doi.org/10.1038/sj.gene.6364273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364273

Keywords

This article is cited by

Search

Quick links