Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential epidermal growth factor receptor signaling regulates anchorage-independent growth by modulation of the PI3K/AKT pathway

Abstract

Tumor cells are capable of surviving loss of nutrients and anchorage in hostile microenvironments. Under these conditions, adapting to specific signaling pathways may shift the balance between growth and cellular dormancy. Here, we report a mechanism by which epidermal growth factor receptor (EGFR) differentially modulates the phosphatidylinositol 3′-kinase (PI3K)/AKT pathway in cellular stress conditions. When carcinoma cells were cultured as multicellular aggregates (MCA), cyclin D1 was induced through a serum-dependent EGFR activating pathway, triggering cell proliferation. The expression of cyclin D1 required both EGFR-mediated ERK and AKT activation. In serum-starved MCAs, EGFR activation was associated with active ERK1/2, but not AKT, and failed to induce cyclin D1. Analysis revealed that, under serum-starved conditions, EGFR-Y1086 residue was poorly autophosphorylated and this correlated with failure to phosphorylate Gab1. Accordingly, the EGFR activation failed to induce EGFR/PI3K complex formation or AKT activation, preventing cyclin D1 induction. Furthermore, we show that in serum-starved MCA, expression of constitutively active AKT re-established cyclin D1 expression and induced proliferation in an EGFR-dependent manner. Thus, modulation of the PI3K/AKT pathway by context-dependent EGFR signaling may regulate tumor cell growth and dormancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aguirre-Ghiso JA . (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7: 834–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alt-Holland A, Zhang W, Margulis A, Garlick JA . (2005). Microenvironmental control of premalignant disease: the role of intercellular adhesion in the progression of squamous cell carcinoma. Semin Cancer Biol 15: 84–96.

    Article  CAS  PubMed  Google Scholar 

  • Bates RC, Edwards NS, Yates JD . (2000). Spheroids and cell survival. Crit Rev Oncol Hematol 36: 61–74.

    Article  CAS  PubMed  Google Scholar 

  • Bernard O, Fazekas de St Groth B, Ullrich A, Green W, Schlessinger J . (1987). High-affinity interleukin 2 binding by an oncogenic hybrid interleukin 2-epidermal growth factor receptor molecule. Proc Natl Acad Sci USA 84: 2125–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, Brugge JS et al. (2004). Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol 24: 8586–8599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P . (2006). Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281: 14026–14040.

    Article  CAS  PubMed  Google Scholar 

  • Cabodi S, Moro L, Bergatto E, Boeri Erba E, Di Stefano P, Turco E et al. (2004). Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans 32: 438–442.

    Article  CAS  PubMed  Google Scholar 

  • Cai W, He JC, Zhu L, Lu C, Vlassara H . (2006). Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci USA 103: 13801–13806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lipkina G, Song Q, Kramer RH . (2004). Promoter methylation regulates cadherin switching in squamous cell carcinoma. Biochem Biophys Res Commun 315: 850–856.

    Article  CAS  PubMed  Google Scholar 

  • Chitaev NA, Troyanovsky SM . (1998). Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. J Cell Biol 142: 837–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA . (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550–562.

    Article  CAS  PubMed  Google Scholar 

  • Fournier AK, Campbell LE, Castagnino P, Liu WF, Chung BM, Weaver VM et al. (2008). Rac-dependent cyclin D1 gene expression regulated by cadherin- and integrin-mediated adhesion. J Cell Sci 121: 226–233.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich J, Ebner R, Kunz-Schughart LA . (2007). Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol 83: 849–871.

    Article  CAS  PubMed  Google Scholar 

  • Frisch SM, Screaton RA . (2001). Anoikis mechanisms. Curr Opin Cell Biol 13: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore AP . (2005). Anoikis. Cell Death Differ 12 (Suppl 2): 1473–1477.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin M, Kovacs EM, Thoreson MA, Reynolds AB, Yap AS . (2003). Minimal mutation of the cytoplasmic tail inhibits the ability of E-cadherin to activate Rac but not phosphatidylinositol 3-kinase: direct evidence of a role for cadherin-activated Rac signaling in adhesion and contact formation. J Biol Chem 278: 20533–20539.

    Article  CAS  PubMed  Google Scholar 

  • Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ . (1996). A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379: 560–564.

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J . (1992). Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 12: 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humtsoe JO, Feng S, Thakker GD, Yang J, Hong J, Wary KK . (2003). Regulation of cell-cell interactions by phosphatidic acid phosphatase 2b/VCIP. EMBO J 22: 1539–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK . (2001). Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12: 363–369.

    CAS  PubMed  Google Scholar 

  • Jo H, Jia Y, Subramanian KK, Hattori H, Luo HR . (2008). Cancer cell-derived clusterin modulates the PI3K-AKT pathway through attenuation of IGF-1 during serum deprivation. Mol Cell Biol 28: 4285–4299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW . (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284: 31–53.

    Article  CAS  PubMed  Google Scholar 

  • Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA et al. (2007). E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 67: 3094–3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantak SS, Kramer RH . (1998). E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273: 16953–16961.

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Kantak SS, Murai M, Yao CC, Kramer RH . (2001). Integrin alpha3beta1 engagement disrupts intercellular adhesion. Exp Cell Res 262: 180–196.

    Article  CAS  PubMed  Google Scholar 

  • Kuwada SK, Li X . (2000). Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol Biol Cell 11: 2485–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor ER, Scheel C, Irving J, Sorensen PH . (2002). Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 21: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL . (2001). ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res 61: 6583–6591.

    CAS  PubMed  Google Scholar 

  • LeVea CM, Reeder JE, Mooney RA . (2004). EGF-dependent cell cycle progression is controlled by density-dependent regulation of Akt activation. Exp Cell Res 297: 272–284.

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Matsumoto K, Nakamura T, Kramer RH . (1994). Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269: 31807–31813.

    CAS  PubMed  Google Scholar 

  • Mattoon DR, Lamothe B, Lax I, Schlessinger J . (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranti CK, Brugge JS . (2002). Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4: E83–E90.

    Article  CAS  PubMed  Google Scholar 

  • Moro L, Dolce L, Cabodi S, Bergatto E, Erba EB, Smeriglio M et al. (2002). Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277: 9405–9414.

    Article  CAS  PubMed  Google Scholar 

  • Nurmenniemi S, Sinikumpu T, Alahuhta I, Salo S, Sutinen M, Santala M et al. (2009). A novel organotypic model mimics the tumor microenvironment. Am J Pathol 175: 1281–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onishi A, Chen Q, Humtsoe JO, Kramer RH . (2008). STAT3 signaling is induced by intercellular adhesion in squamous cell carcinoma cells. Exp Cell Res 314: 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Pece S, Gutkind JS . (2000). Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275: 41227–41233.

    Article  CAS  PubMed  Google Scholar 

  • Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A . (2006). EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res 66: 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan AC, Adam AP, Aguirre-Ghiso JA . (2006). Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5: 1799–1807.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J . (2000). A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 20: 1448–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini MT, Rainaldi G, Indovina PL . (2000). Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit Rev Oncol Hematol 36: 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MH, Furnari FB, Cavenee WK, Bogler O . (2003). Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci USA 100: 6505–6510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider MR, Wolf E . (2009). The epidermal growth factor receptor ligands at a glance. J Cell Physiol 218: 460–466.

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Kramer RH . (2004). Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165: 1315–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Sugimoto K, Harris RC . (2007). Juxtacrine activation of epidermal growth factor (EGF) receptor by membrane-anchored heparin-binding EGF-like growth factor protects epithelial cells from anoikis while maintaining an epithelial phenotype. J Biol Chem 282: 32890–32901.

    Article  CAS  PubMed  Google Scholar 

  • Thelemann A, Petti F, Griffin G, Iwata K, Hunt T, Settinari T et al. (2005). Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteomic 4: 356–376.

    Article  CAS  Google Scholar 

  • Walker JL, Assoian RK . (2005). Integrin-dependent signal transduction regulating cyclin D1 expression and G1 phase cell cycle progression. Cancer Metastasis Rev 24: 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W . (1996). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384: 173–176.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr KK Wary (UIC, Chicago) for the insightful discussions and comments, Dr SM Troyanovsky (Washington University, St Louis) for providing the E-cadherin constructs, Dr D Stokoe (UCSF, San Francisco) for the GFP-AKT constructs, L Lee and B Situ for their assistance in preparing the paper. This work was supported by NIH grant R01 DE11436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Kramer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humtsoe, J., Kramer, R. Differential epidermal growth factor receptor signaling regulates anchorage-independent growth by modulation of the PI3K/AKT pathway. Oncogene 29, 1214–1226 (2010). https://doi.org/10.1038/onc.2009.419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.419

Keywords

This article is cited by

Search

Quick links