Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptome profiling of a TGF-β-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies

Abstract

Transforming growth factor (TGF)-β plays a dual role in tumorigenesis, switching from acting as a growth inhibitory tumor suppressor early in the process, to a tumor promoter in late-stage disease. Since TGF-β's prometastatic role may be linked to its ability to induce tumor cell epithelial-to-mesenchymal transition (EMT), we explored TGF-β's EMT-promoting pathways by analysing the transcriptome changes occurring in BRI-JM01 mammary tumor epithelial cells undergoing a TGF-β-induced EMT. We found the clusterin gene to be the most highly upregulated throughout most of the TGF-β time course, and showed that this results in an increase of the secreted form of clusterin. By monitoring several hallmark features of EMT, we demonstrated that antibodies targeting secreted clusterin inhibit the TGF-β-induced EMT of BRI-JM01 cells, as well as the invasive phenotype of several other breast and prostate tumor cell lines (4T1, NMuMG, MDA-MB231LM2 and PC3), without affecting the proliferation of these cells. These results indicate that secreted clusterin is a functionally important EMT mediator that lies downstream within TGF-β's EMT-promoting transcriptional cascade, but not within its growth-inhibitory pathways. To further investigate the role played by secreted clusterin in tumor metastasis, we assessed the effect of several anti-clusterin monoclonal antibodies in vivo using a 4T1 syngeneic mouse breast cancer model and found that these antibodies significantly reduce lung metastasis. Taken together, our results reveal a role for secreted clusterin as an important extracellular promoter of EMT, and suggest that antibodies targeting clusterin may inhibit tumor metastasis without reducing the beneficial growth inhibitory effects of TGF-β.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • al Moustafa AE, Urbani N, O’Connor-McCourt M . (1999). Black cellular spreading and motility assay. Biotechniques 27: 60–62.

    CAS  PubMed  Google Scholar 

  • Ammar H, Closset JL . (2008). Clusterin activates survival through the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 283: 12851–12861.

    CAS  PubMed  Google Scholar 

  • Andersen CL, Schepeler T, Thorsen K, Birkenkamp-Demtroder K, Mansilla F, Aaltonen LA et al. (2007). Clusterin expression in normal mucosa and colorectal cancer. Mol Cell Proteomics 6: 1039–1048.

    CAS  PubMed  Google Scholar 

  • Aslakson CJ, Miller FR . (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52: 1399–1405.

    CAS  PubMed  Google Scholar 

  • Bates RC, Mercurio AM . (2003). Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14: 1790–1800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaschuk O, Burdzy K, Fritz IB . (1983). Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J Biol Chem 258: 7714–7720.

    CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98: 10356–10361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R et al. (2007a). Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 67: 8742–8751.

    CAS  PubMed  Google Scholar 

  • Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, ten Dijke P, van der Pluijm G . (2007b). TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24: 609–617.

    CAS  PubMed  Google Scholar 

  • Chi KN, Eisenhauer E, Fazli L, Jones EC, Goldenberg SL, Powers J et al. (2005). A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2′-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 97: 1287–1296.

    CAS  PubMed  Google Scholar 

  • Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10: 529–541.

    CAS  PubMed  Google Scholar 

  • Chou TY, Chen WC, Lee AC, Hung SM, Shih NY, Chen MY . (2009). Clusterin silencing in human lung adenocarcinoma cells induces a mesenchymal-to-epithelial transition through modulating the ERK/Slug pathway. Cell Signal 21: 704–711.

    CAS  PubMed  Google Scholar 

  • Cochrane DR, Wang Z, Muramaki M, Gleave ME, Nelson CC . (2007). Differential regulation of clusterin and its isoforms by androgens in prostate cells. J Biol Chem 282: 2278–2287.

    CAS  PubMed  Google Scholar 

  • Dalal BI, Keown PA, Greenberg AH . (1993). Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143: 381–389.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont N, Bakin AV, Arteaga CL . (2003). Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 278: 3275–3285.

    CAS  PubMed  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS et al. (2001). Intrinsically disordered protein. J Mol Graph Model 19: 26–59.

    CAS  PubMed  Google Scholar 

  • Durocher Y, Perret S, Kamen A . (2002). High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30: E9.

    PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D . (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enjalbert B, Nantel A, Whiteway M . (2003). Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14: 1460–1467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng XH, Derynck R . (2005). Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693.

    CAS  PubMed  Google Scholar 

  • Fritz IB, Burdzy K, Setchell B, Blaschuk O . (1983). Ram rete testis fluid contains a protein (clusterin) which influences cell–cell interactions in vitro. Biol Reprod 28: 1173–1188.

    CAS  PubMed  Google Scholar 

  • Gleave ME, Miyake H, Zellweger T, Chi K, July L, Nelson C et al. (2001). Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/testosterone-repressed prostate message 2, to enhance androgen sensitivity and chemosensitivity in prostate cancer. Urology 58: 39–49.

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593–601.

    CAS  PubMed  Google Scholar 

  • Hay ED . (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233: 706–720.

    CAS  PubMed  Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213: 374–383.

    CAS  PubMed  Google Scholar 

  • Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR . (1999). Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274: 6875–6881.

    CAS  PubMed  Google Scholar 

  • Hunakova L, Sedlakova O, Cholujova D, Gronesova P, Duraj J, Sedlak J . (2009). Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma 56: 548–556.

    CAS  PubMed  Google Scholar 

  • Jin G, Howe PH . (1997). Regulation of clusterin gene expression by transforming growth factor beta. J Biol Chem 272: 26620–26626.

    CAS  PubMed  Google Scholar 

  • Jin G, Howe PH . (1999). Transforming growth factor beta regulates clusterin gene expression via modulation of transcription factor c-Fos. Eur J Biochem 263: 534–542.

    CAS  PubMed  Google Scholar 

  • Jo H, Jia Y, Subramanian KK, Hattori H, Luo HR . (2008). Cancer cell-derived clusterin modulates the phosphatidylinositol 3′-kinase–Akt pathway through attenuation of insulin-like growth factor 1 during serum deprivation. Mol Cell Biol 28: 4285–4299.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jo M, Lester RD, Montel V, Eastman B, Takimoto S, Gonias SL . (2009). Reversibility of epithelial–mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J Biol Chem 284: 22825–22833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakins JN, Poon S, Easterbrook-Smith SB, Carver JA, Tenniswood MP, Wilson MR . (2002). Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41: 282–291.

    CAS  PubMed  Google Scholar 

  • Lau SH, Sham JS, Xie D, Tzang CH, Tang D, Ma N et al. (2006). Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene 25: 1242–1250.

    CAS  PubMed  Google Scholar 

  • Lee KB, Jeon JH, Choi I, Kwon OY, Yu K, You KH . (2008). Clusterin, a novel modulator of TGF-beta signaling, is involved in Smad2/3 stability. Biochem Biophys Res Commun 366: 905–909.

    CAS  PubMed  Google Scholar 

  • Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17: 163–170.

    CAS  PubMed  Google Scholar 

  • Lenferink AE, Magoon J, Cantin C, O’Connor-McCourt MD . (2004). Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-beta and Neu pathway signaling studies: identification of a novel model for TGF-beta-induced epithelial-to-mesenchymal transition. Breast Cancer Res 6: R514–R530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leskov KS, Klokov DY, Li J, Kinsella TJ, Boothman DA . (2003). Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 278: 11590–11600.

    CAS  PubMed  Google Scholar 

  • Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, McDonald PC et al. (2008). Epithelial–mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn 237: 2755–2768.

    CAS  PubMed  Google Scholar 

  • Matsubara M, Girard MT, Kublin CL, Cintron C, Fini ME . (1991a). Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Dev Biol 147: 425–439.

    CAS  PubMed  Google Scholar 

  • Matsubara M, Zieske JD, Fini ME . (1991b). Mechanism of basement membrane dissolution preceding corneal ulceration. Invest Ophthalmol Vis Sci 32: 3221–3237.

    CAS  PubMed  Google Scholar 

  • Miettinen PJ, Ebner R, Lopez AR, Derynck R . (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127: 2021–2036.

    CAS  PubMed  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake H, Gleave ME, Arakawa S, Kamidono S, Hara I . (2002a). Introducing the clusterin gene into human renal cell carcinoma cells enhances their metastatic potential. J Urol 167: 2203–2208.

    CAS  PubMed  Google Scholar 

  • Miyake H, Hara S, Arakawa S, Kamidono S, Hara I . (2002b). Overexpression of clusterin is an independent prognostic factor for nonpapillary renal cell carcinoma. J Urol 167: 703–706.

    CAS  PubMed  Google Scholar 

  • Miyake H, Nelson C, Rennie PS, Gleave ME . (2000). Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Cancer Res 60: 2547–2554.

    CAS  PubMed  Google Scholar 

  • Moretti RM, Marelli MM, Mai S, Cariboni A, Scaltriti M, Bettuzzi S et al. (2007). Clusterin isoforms differentially affect growth and motility of prostate cells: possible implications in prostate tumorigenesis. Cancer Res 67: 10325–10333.

    CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH . (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98: 1512–1520.

    CAS  PubMed  Google Scholar 

  • Nam JS, Suchar AM, Kang MJ, Stuelten CH, Tang B, Michalowska AM et al. (2006). Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Res 66: 6327–6335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA et al. (2008). Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 68: 3915–3923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DX, Massague J . (2007). Genetic determinants of cancer metastasis. Nat Rev Genet 8: 341–352.

    CAS  PubMed  Google Scholar 

  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E . (1996). TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10: 2462–2477.

    CAS  PubMed  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775: 21–62.

    CAS  PubMed  Google Scholar 

  • Park DC, Yeo SG, Wilson MR, Yerbury JJ, Kwong J, Welch WR et al. (2008). Clusterin interacts with paclitaxel and confer paclitaxel resistance in ovarian cancer. Neoplasia 10: 964–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    CAS  PubMed  Google Scholar 

  • Poon S, Treweek TM, Wilson MR, Easterbrook-Smith SB, Carver JA . (2002). Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513: 259–266.

    CAS  PubMed  Google Scholar 

  • Reddy KB, Karode MC, Harmony AK, Howe PH . (1996). Interaction of transforming growth factor beta receptors with apolipoprotein J/clusterin. Biochemistry 35: 309–314.

    CAS  PubMed  Google Scholar 

  • Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK . (2000). Overexpression of clusterin in human breast carcinoma. Am J Pathol 157: 393–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24: 227–235.

    CAS  PubMed  Google Scholar 

  • Santilli G, Aronow BJ, Sala A . (2003). Essential requirement of apolipoprotein J (clusterin) signaling for IkappaB expression and regulation of NF-kappaB activity. J Biol Chem 278: 38214–38219.

    CAS  PubMed  Google Scholar 

  • Scaltriti M, Bettuzzi S, Sharrard RM, Caporali A, Caccamo AE, Maitland NJ . (2004). Clusterin overexpression in both malignant and nonmalignant prostate epithelial cells induces cell cycle arrest and apoptosis. Br J Cancer 91: 1842–1850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheel C, Onder T, Karnoub A, Weinberg RA . (2007). Adaptation versus selection: the origins of metastatic behavior. Cancer Res 67: 11476–11479; discussion 11479–80.

    CAS  PubMed  Google Scholar 

  • Shannan B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W et al. (2006). Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 13: 12–19.

    CAS  PubMed  Google Scholar 

  • Shook D, Keller R . (2003). Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev 120: 1351–1383.

    CAS  PubMed  Google Scholar 

  • Siegel PM, Massague J . (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3: 807–821.

    CAS  PubMed  Google Scholar 

  • Sintich SM, Steinberg J, Kozlowski JM, Lee C, Pruden S, Sayeed S et al. (1999). Cytotoxic sensitivity to tumor necrosis factor-alpha in PC3 and LNCaP prostatic cancer cells is regulated by extracellular levels of SGP-2 (clusterin). Prostate 39: 87–93.

    CAS  PubMed  Google Scholar 

  • So A, Gleave M, Hurtado-Col A, Nelson C . (2005a). Mechanisms of the development of androgen independence in prostate cancer. World J Urol 23: 1–9.

    CAS  PubMed  Google Scholar 

  • So A, Rocchi P, Gleave M . (2005b). Antisense oligonucleotide therapy in the management of bladder cancer. Curr Opin Urol 15: 320–327.

    PubMed  Google Scholar 

  • So A, Sinnemann S, Huntsman D, Fazli L, Gleave M . (2005c). Knockdown of the cytoprotective chaperone, clusterin, chemosensitizes human breast cancer cells both in vitro and in vivo. Mol Cancer Ther 4: 1837–1849.

    CAS  PubMed  Google Scholar 

  • Steinberg J, Oyasu R, Lang S, Sintich S, Rademaker A, Lee C et al. (1997). Intracellular levels of SGP-2 (clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res 3: 1707–1711.

    CAS  PubMed  Google Scholar 

  • Tarin D, Thompson EW, Newgreen DF . (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65: 5996–6000; discussion 6000–1.

    CAS  PubMed  Google Scholar 

  • Thiery JP . (2003). Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746.

    CAS  PubMed  Google Scholar 

  • Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150: 534–544.

    CAS  PubMed  Google Scholar 

  • Tom R, Bisson L, Durocher Y . (2007). Transient expression in HEK293 EBNA1 cells. In: Dyson MR and Durocher Y (eds). Methods Express: Expression Systems. Scion Publishing Limited: Bloxham, Oxfordshire, UK. pp 203–223.

    Google Scholar 

  • Trougakos IP, Djeu JY, Gonos ES, Boothman DA . (2009). Advances and challenges in basic and translational research on clusterin. Cancer Res 69: 403–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trougakos IP, Gonos ES . (2002). Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34: 1430–1448.

    CAS  PubMed  Google Scholar 

  • Trougakos IP, Lourda M, Agiostratidou G, Kletsas D, Gonos ES . (2005). Differential effects of clusterin/apolipoprotein J on cellular growth and survival. Free Radic Biol Med 38: 436–449.

    CAS  PubMed  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A . (2005). TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol Biol Cell 16: 1987–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakefield LM, Roberts AB . (2002). TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29.

    CAS  PubMed  Google Scholar 

  • Wegrowski Y, Perreau C, Martiny L, Haye B, Maquart FX, Bellon G . (1999). Transforming growth factor beta-1 upregulates clusterin synthesis in thyroid epithelial cells. Exp Cell Res 247: 475–483.

    CAS  PubMed  Google Scholar 

  • Wilson MR, Easterbrook-Smith SB . (1992). Clusterin binds by a multivalent mechanism to the Fc and Fab regions of IgG. Biochim Biophys Acta 1159: 319–326.

    CAS  PubMed  Google Scholar 

  • Wilson MR, Easterbrook-Smith SB . (2000). Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25: 95–98.

    CAS  PubMed  Google Scholar 

  • Xie L, Law BK, Aakre ME, Edgerton M, Shyr Y, Bhowmick NA et al. (2003). Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 5: R187–R198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10: 295–305.

    CAS  PubMed  Google Scholar 

  • Yu L, Hebert MC, Zhang YE . (2002). TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 21: 3749–3759.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zellweger T, Miyake H, Cooper S, Chi K, Conklin BS, Monia BP et al. (2001). Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 298: 934–940.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Josée Ash (microarray experiments), Lucie Bourget (flow cytometry experiments), and Cynthia Hélie and Mario Mercier (animal studies) for their contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E G Lenferink.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenferink, A., Cantin, C., Nantel, A. et al. Transcriptome profiling of a TGF-β-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies. Oncogene 29, 831–844 (2010). https://doi.org/10.1038/onc.2009.399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.399

Keywords

This article is cited by

Search

Quick links