Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RASSF2 associates with and stabilizes the proapoptotic kinase MST2

Abstract

RASSF2 is a tumour suppressor that in common with the rest of the RASSF family contains Ras association and SARAH domains. We identified the proapoptotic kinases, MST1 and MST2, as the most significant binding partners of RASSF2, confirmed the interactions at endogenous levels and showed that RASSF2 immunoprecipitates active MST1/2. We then showed that RASSF2 can be phosphorylated by a co-immunoprecipitating kinase that is likely to be MST1/2. Furthermore, we showed that RASSF2 and MST2 do indeed colocalize, but whereas RASSF2 alone is nuclear, the presence of MST1 or MST2 results in colocalization in the cytoplasm. Expression of RASSF2 (stably in MCF7 or transiently in HEK-293) increases MST2 levels and knockdown of RASSF2 in HEK-293 cells reduces MST2 levels, in addition colorectal tumour cell lines and primary tumours with low RASSF2 levels show decreased MST2 protein levels. This is likely to be mediated by RASSF2-dependent protection of MST2 against proteolytic degradation. Our findings suggest that MST2 and RASSF2 form an active complex in vivo, in which RASSF2 is maintained in a phosphorylated state and protects MST2 from degradation and turnover. Thus, we propose that the frequent loss of RASSF2 in tumours results in the destablization of MST2 and thus decreased apoptotic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Agathanggelou A, Cooper WN, Latif F . (2005). Role of the ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65: 3497–3508.

    Article  CAS  PubMed  Google Scholar 

  • Callus BA, Verhagen AM, Vaux DL . (2006). Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J 273: 4264–4276.

    Article  CAS  PubMed  Google Scholar 

  • Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA et al. (2003). Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113: 507–517.

    Article  CAS  PubMed  Google Scholar 

  • Cooper WN, Dickinson RE, Dallol A, Grigorieva EV, Pavlova TV, Hesson LB et al. (2008). Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer. Oncogene 27: 1805–1811.

    Article  CAS  PubMed  Google Scholar 

  • Creasy CL, Ambrose DM, Chernoff J . (1996). The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J Biol Chem 271: 21049–21053.

    Article  CAS  PubMed  Google Scholar 

  • Dallol A, Agathanggelou A, Fenton SL, Ahmed-Choudhury J, Hesson L, Vos MD et al. (2004). RASSFIA interacts with microtubule-associated proteins and modulates microtubule dynamics. Cancer Res 64: 4112–4116.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Pang A, Wang JH . (2003). Regulation of mammalian STE20-like kinase 2 (MST2) by protein phosphorylation/dephosphorylation and proteolysis. J Biol Chem 278: 11760–11767.

    Article  CAS  PubMed  Google Scholar 

  • Durocher Y, Perret S, Kamen A . (2002). High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30: E9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endoh M, Tamura G, Honda T, Homma N, Terashima M, Nishizuka S et al. (2005). RASSF2, a potential tumour suppressor, is silenced by CpG island hypermethylation in gastric cancer. Br J Cancer 93: 1395–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton SL, Dallol A, Agathanggelou A, Hesson L, Ahmed-Choudhury J, Baksh S et al. (2004). Identification of the E1A-regulated transcription factor p120(E4F) as an interacting partner of the RASSF1A candidate tumor suppressor gene. Cancer Res 64: 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Glantschnig H, Rodan GA, Reszka AA . (2002). Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J Biol Chem 277: 42987–42996.

    Article  CAS  PubMed  Google Scholar 

  • Graves JD, Draves KE, Gotoh Y, Krebs EG, Clark EA . (2001). Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem 276: 14909–14915.

    Article  CAS  PubMed  Google Scholar 

  • Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DKM, Wright M et al. (1998). Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J 17: 2224–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP . (2007). RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol 17: 700–705.

    Article  CAS  PubMed  Google Scholar 

  • Hesson LB, Wilson R, Morton D, Adams C, Walker M, Maher ER et al. (2005). CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations. Oncogene 24: 3987–3994.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liu Z, Yang SJ, Ye K . (2007). Acinus-provoked protein kinase C delta isoform activation is essential for apoptotic chromatin condensation. Cell Death Differ 14: 2035–2046.

    Article  CAS  PubMed  Google Scholar 

  • Hwang E, Ryu KS, Paakkonen K, Guntert P, Cheong HK, Lim DS et al. (2007). Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci USA 104: 9236–9241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai T, Toyota M, Suzuki H, Akino K, Ogi K, Sogabe Y et al. (2008). Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci 99: 958–966.

    Article  CAS  PubMed  Google Scholar 

  • Kaira K, Sunaga N, Tomizawa Y, Yanagitani N, Ishizuka T, Saito R et al. (2007). Epigenetic inactivation of the RAS-effector gene RASSF2 in lung cancers. Int J Oncol 31: 169–173.

    CAS  PubMed  Google Scholar 

  • Kakeya H, Onose R, Osada H . (1998). Caspase-mediated activation of a 36-kDa myelin basic protein kinase during anticancer drug-induced apoptosis. Cancer Res 58: 4888–4894.

    CAS  PubMed  Google Scholar 

  • Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF et al. (2002). Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 12: 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Kriegsheim A, Preisinger C, Kolch W . (2008). Mapping of signaling pathways by functional interaction proteomics. Methods Mol Biol 484: 177–192.

    Article  Google Scholar 

  • Kumari G, Singhal PK, Rao MR, Mahalingam S . (2007). Nuclear transport of Ras-associated tumor suppressor proteins: different transport receptor binding specificities for arginine-rich nuclear targeting signals. J Mol Biol 367: 1294–1311.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov S, Khokhlatchev AV . (2008). The growth and tumor suppressors NORE1A and RASSF1A are targets for calpain-mediated proteolysis. PLoS ONE 3: e3997.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KK, Ohyama T, Yajima N, Tsubuki S, Yonehara S . (2001). MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem 276: 19276–19285.

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Yonehara S . (2002). Phosphorylation and dimerization regulate nucleocytoplasmic shuttling of mammalian STE20-like kinase (MST). J Biol Chem 277: 12351–12358.

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Siu MK, Chan KY, Wong ES, Ngan HY, Chan QK et al. (2008). Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis. Int J Cancer 123: 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Khokhlatchev A, Figeys D, Avruch J . (2002). Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J Biol Chem 277: 47991–48001.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama R, Akino K, Toyota M, Suzuki H, Imai T, Ohe-Toyota M et al. (2008). Cytoplasmic RASSF2A is a pro-apoptotic mediator whose expression is epigenetically silenced in gastric cancer. Carcinogenesis.

  • O'Neill E, Rushworth L, Baccarini M, Kolch W . (2004). Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 306: 2267–2270.

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH et al. (2006). Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res 66: 2562–2569.

    Article  CAS  PubMed  Google Scholar 

  • Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J . (2004). Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 381: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A et al. (2004). The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem 279: 29247–29254.

    Article  CAS  PubMed  Google Scholar 

  • Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA . (1999). Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 274: 34967–34973.

    Article  CAS  PubMed  Google Scholar 

  • Scheel H, Hofmann K . (2003). A novel interaction motif, SARAH, connects three classes of tumor suppressor. Curr Biol 13: R899–900.

    Article  CAS  PubMed  Google Scholar 

  • Ura S, Masuyama N, Graves JD, Gotoh Y . (2001). Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci USA 98: 10148–10153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ura S, Nishina H, Gotoh Y, Katada T . (2007). Activation of the c-Jun N-terminal kinase pathway by MST1 is essential and sufficient for the induction of chromatin condensation during apoptosis. Mol Cell Biol 27: 5514–5522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS . (2006). Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol 8: 1011–1016.

    CAS  PubMed  Google Scholar 

  • Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ . (2003). RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J Biol Chem 278: 28045–28051.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Sumpton and Willy Bienvenut for the mass spectrometry. This work was supported by Breast Cancer Campaign, Cancer Research UK, Sport Aiding Medical Research for Kids (to FL) and The European Union FP6 project ‘Interaction Proteome’ (LSHG-CT-2003-505520) and Cancer Research UK (to WK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Latif.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, W., Hesson, L., Matallanas, D. et al. RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene 28, 2988–2998 (2009). https://doi.org/10.1038/onc.2009.152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.152

Keywords

This article is cited by

Search

Quick links