Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from 2-methoxyestradiol-induced-mitochondria-dependent apoptosis

Abstract

2-Methoxyestradiol (2-ME), an endogenous estrogen metabolite of 17β-estradiol, is known to induce mitochondria-mediated apoptosis through several mechanisms. We sought to study the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on HeLa cells exposed to 2-ME. MTS-hOGG1-expressing cells exposed to 2-ME showed increased cellular survival and had significantly less G2/M cell cycle arrest compared to vector-only-transfected cells. In addition, 2-ME exposure resulted in an increase in mitochondrial membrane potential, increased apoptosis, accompanied by higher activation of caspase-3, -9, cleavage of Bid to tBid and protein poly(ADP-ribose) polymerase (PARP) cleavage in HeLa cells lacking MTS-hOGG1. Fas inhibitors cerulenin or C75 inhibited 2-ME-induced caspase activation, PARP cleavage, apoptosis and reversed mitochondrial membrane hyperpolarization, thereby recapitulating the increased expression of MTS-hOGG1. Hence, MTS-hOGG1 plays an important protective role against 2-ME-mediated mitochondrial damage by blocking apoptosis induced through the Fas pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Achanta G, Huang P . (2004). Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res 64: 6233–6239.

    Article  CAS  Google Scholar 

  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL et al. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48: 589–601.

    CAS  PubMed  Google Scholar 

  • Audebert M, Charbonnier JB, Boiteux S, Radicella JP . (2002). Mitochondrial targeting of human 8-oxoguanine DNA glycosylase hOGG1 is impaired by a somatic mutation found in kidney cancer. DNA Repair (Amst) 1: 497–505.

    Article  CAS  Google Scholar 

  • Banki K, Hutter E, Gonchoroff NJ, Perl A . (1999). Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 162: 1466–1479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaisdell JO, Wallace SS . (2001). Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci USA 98: 7426–7430.

    Article  CAS  Google Scholar 

  • Bohr VA, Stevnsner T, De Souza-Pinto NC . (2002). Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286: 127–134.

    Article  CAS  Google Scholar 

  • Cadet J, Berger M, Douki T, Ravanat JL . (1997). Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 131: 1–87.

    CAS  PubMed  Google Scholar 

  • Chatterjee A, Mambo E, Zhang Y, Deweese T, Sidransky D . (2006). Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress. BMC Cancer 6: 235.

    Article  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA . (1992). 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G- - - -T and A- - - -C substitutions. J Biol Chem 267: 166–172.

    CAS  PubMed  Google Scholar 

  • Chi NW, Kolodner RD . (1994). Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 269: 29984–29992.

    CAS  PubMed  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, McKee AC, Beal MF et al. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23: 471–476.

    Article  CAS  Google Scholar 

  • Davis RE, Miller S, Herrnstadt C, Ghosh SS, Fahy E, Shinobu LA et al. (1997). Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA 94: 4526–4531.

    Article  CAS  Google Scholar 

  • Dhenaut A, Boiteux S, Radicella JP . (2000). Characterization of the hOGG1 promoter and its expression during the cell cycle. Mutat Res 461: 109–118.

    Article  CAS  Google Scholar 

  • Dhenaut A, Hollenbach S, Eckert I, Epe B, Boiteux S, Radicella JP . (2001). Characterization of hOGG1 promoter structure, expression during cell cycle and overexpression in mammalian cells. Adv Exp Med Biol 500: 613–616.

    Article  CAS  Google Scholar 

  • Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA . (2001). Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol 68: 285–297.

    Article  CAS  Google Scholar 

  • Dizdaroglu M . (1991). Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med 10: 225–242.

    Article  CAS  Google Scholar 

  • Djavaheri-Mergny M, Wietzerbin J, Besancon F . (2003a). 2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production. Oncogene 22: 2558–2567.

    Article  CAS  Google Scholar 

  • Djavaheri-Mergny M, Wietzerbin J, Rouillard D, Besancon F . (2003b). TNFalpha potentiates 2-methoxyestradiol-induced mitochondrial death pathway. Ann NY Acad Sci 1010: 159–162.

    Article  CAS  Google Scholar 

  • Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL . (2000). Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem 275: 37518–37523.

    Article  CAS  Google Scholar 

  • Druzhyna NM, Hollensworth SB, Kelley MR, Wilson GL, Ledoux SP . (2003). Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42: 370–378.

    Article  Google Scholar 

  • Druzhyna NM, Musiyenko SI, Wilson GL, LeDoux SP . (2005). Cytokines induce nitric oxide-mediated mtDNA damage and apoptosis in oligodendrocytes. Protective role of targeting 8-oxoguanine glycosylase to mitochondria. J Biol Chem 280: 21673–21679.

    Article  CAS  Google Scholar 

  • Dubey RK, Gillespie DG, Jackson EK, Keller PJ . (1998). 17Beta-estradiol, its metabolites, and progesterone inhibit cardiac fibroblast growth. Hypertension 31: 522–528.

    Article  CAS  Google Scholar 

  • Fanizza C, Ursini CL, Paba E, Ciervo A, Di Francesco A, Maiello R et al. (2007). Cytotoxicity and DNA-damage in human lung epithelial cells exposed to respirable alpha-quartz. Toxicol In Vitro 21: 586–594.

    Article  CAS  Google Scholar 

  • Fishel ML, Seo YR, Smith ML, Kelley MR . (2003). Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing. Cancer Res 63: 608–615.

    CAS  PubMed  Google Scholar 

  • Gao N, Rahmani M, Dent P, Grant S . (2005). 2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Akt-dependent process. Oncogene 24: 3797–3809.

    Article  CAS  Google Scholar 

  • Grollman AP, Moriya M . (1993). Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 9: 246–249.

    Article  CAS  Google Scholar 

  • Gui Y, Zheng XL . (2006). 2-Methoxyestradiol induces cell cycle arrest and mitotic cell apoptosis in human vascular smooth muscle cells. Hypertension 47: 271–280.

    Article  CAS  Google Scholar 

  • Hagen T, D'Amico G, Quintero M, Palacios-Callender M, Hollis V, Lam F et al. (2004). Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol. Biochem Biophys Res Commun 322: 923–929.

    Article  CAS  Google Scholar 

  • Hazra TK, Hill JW, Izumi T, Mitra S . (2001). Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog Nucleic Acid Res Mol Biol 68: 193–205.

    Article  CAS  Google Scholar 

  • Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W . (2000). Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407: 390–395.

    Article  CAS  Google Scholar 

  • Hutchin T, Cortopassi G . (1995). A mitochondrial DNA clone is associated with increased risk for Alzheimer disease. Proc Natl Acad Sci USA 92: 6892–6895.

    Article  CAS  Google Scholar 

  • Ide H, Kotera M . (2004). Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol Pharm Bull 27: 480–485.

    Article  CAS  Google Scholar 

  • Itoh K, Hase H, Kojima H, Saotome K, Nishioka K, Kobata T . (2004). Central role of mitochondria and p53 in Fas-mediated apoptosis of rheumatoid synovial fibroblasts. Rheumatology (Oxford) 43: 277–285.

    Article  CAS  Google Scholar 

  • Kachadourian R, Liochev SI, Cabelli DE, Patel MN, Fridovich I, Day BJ . (2001). 2-Methoxyestradiol does not inhibit superoxide dismutase. Arch Biochem Biophys 392: 349–353.

    Article  CAS  Google Scholar 

  • Krokan HE, Nilsen H, Skorpen F, Otterlei M, Slupphaug G . (2000). Base excision repair of DNA in mammalian cells. FEBS Lett 476: 73–77.

    Article  CAS  Google Scholar 

  • Lambert C, Apel K, Biesalski HK, Frank J . (2004). 2-Methoxyestradiol induces caspase-independent, mitochondria-centered apoptosis in DS-sarcoma cells. Int J Cancer 108: 493–501.

    Article  CAS  Google Scholar 

  • Lambert C, Thews O, Biesalski HK, Vaupel P, Kelleher DK, Frank J . (2002). 2-Methoxyestradiol enhances reactive oxygen species formation and increases the efficacy of oxygen radical generating tumor treatment. Eur J Med Res 7: 404–414.

    CAS  PubMed  Google Scholar 

  • LaVallee TM, Zhan XH, Johnson MS, Herbstritt CJ, Swartz G, Williams MS et al. (2003). 2-Methoxyestradiol up-regulates death receptor 5 and induces apoptosis through activation of the extrinsic pathway. Cancer Res 63: 468–475.

    CAS  PubMed  Google Scholar 

  • Li L, Bu S, Backstrom T, Landstrom M, Ulmsten U, Fu X . (2004a). Induction of apoptosis and G2/M arrest by 2-methoxyestradiol in human cervical cancer HeLaS3 cells. Anticancer Res 24: 873–880.

    CAS  PubMed  Google Scholar 

  • Li L, Heldin NE, Grawe J, Ulmsten U, Fu X . (2004b). Induction of apoptosis or necrosis in human endometrial carcinoma cells by 2-methoxyestradiol. Anticancer Res 24: 3983–3990.

    CAS  PubMed  Google Scholar 

  • Lightowlers RN, Chinnery PF, Turnbull DM, Howell N . (1997). Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13: 450–455.

    Article  CAS  Google Scholar 

  • Mambo E, Chatterjee A, De Souza-Pinto NC, Mayard S, Hogue BA, Hoque MO et al. (2005). Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene 24: 4496–4508.

    Article  CAS  Google Scholar 

  • Mambo E, Nyaga SG, Bohr VA, Evans MK . (2002). Defective repair of 8-hydroxyguanine in mitochondria of MCF-7 and MDA-MB-468 human breast cancer cell lines. Cancer Res 62: 1349–1355.

    CAS  PubMed  Google Scholar 

  • Michaels ML, Miller JH . (1992). The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174: 6321–6325.

    Article  CAS  Google Scholar 

  • Michaels ML, Tchou J, Grollman AP, Miller JH . (1992). A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry 31: 10964–10968.

    Article  CAS  Google Scholar 

  • Modica-Napolitano JS, Koya K, Weisberg E, Brunelli BT, Li Y, Chen LB . (1996). Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res 56: 544–550.

    CAS  PubMed  Google Scholar 

  • Mooberry SL . (2003). Mechanism of action of 2-methoxyestradiol: new developments. Drug Resist Updat 6: 355–361.

    Article  CAS  Google Scholar 

  • Morgunov I, Srere PA . (1998). Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J Biol Chem 273: 29540–29544.

    Article  CAS  Google Scholar 

  • Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP . (1991). Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E.coli. Mutat Res 254: 281–288.

    Article  CAS  Google Scholar 

  • Nabi ZF, Zucker-Franklin D, Lipkin G, Rosenberg M . (1986). Susceptibility to NK cell lysis is abolished in tumor cells by a factor which restores their contact inhibited growth. Cancer 58: 1461–1465.

    Article  CAS  Google Scholar 

  • Pani G, Bedogni B, Anzevino R, Colavitti R, Palazzotti B, Borrello S et al. (2000). Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res 60: 4654–4660.

    CAS  PubMed  Google Scholar 

  • Parlanti E, Fortini P, Macpherson P, Laval J, Dogliotti E . (2002). Base excision repair of adenine/8-oxoguanine mispairs by an aphidicolin-sensitive DNA polymerase in human cell extracts. Oncogene 21: 5204–5212.

    Article  CAS  Google Scholar 

  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W et al. (2003). Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278: 37832–37839.

    Article  CAS  Google Scholar 

  • Planas-Silva MD, Weinberg RA . (1997). Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Mol Cell Biol 17: 4059–4069.

    Article  CAS  Google Scholar 

  • Qanungo S, Basu A, Das M, Haldar S . (2002). 2-Methoxyestradiol induces mitochondria dependent apoptotic signaling in pancreatic cancer cells. Oncogene 21: 4149–4157.

    Article  CAS  Google Scholar 

  • Rachek LI, Grishko VI, Ledoux SP, Wilson GL . (2006a). Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis. Free Radic Biol Med 40: 754–762.

    Article  CAS  Google Scholar 

  • Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL . (2002). Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 277: 44932–44937.

    Article  CAS  Google Scholar 

  • Rachek LI, Thornley NP, Grishko VI, LeDoux SP, Wilson GL . (2006b). Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. Diabetes 55: 1022–1028.

    Article  CAS  Google Scholar 

  • Reers M, Smith TW, Chen LB . (1991). J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30: 4480–4486.

    Article  CAS  Google Scholar 

  • Rinne ML, He Y, Pachkowski BF, Nakamura J, Kelley MR . (2005). N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts. Nucleic Acids Res 33: 2859–2867.

    Article  CAS  Google Scholar 

  • Ruchko M, Gorodnya O, LeDoux SP, Alexeyev MF, Al-Mehdi AB, Gillespie MN . (2005). Mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 288: L530–L535.

    Article  CAS  Google Scholar 

  • Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A . (1997). JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411: 77–82.

    Article  CAS  Google Scholar 

  • Schapira AH . (1999). Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim Biophys Acta 1410: 159–170.

    Article  CAS  Google Scholar 

  • Segal-Bendirdjian E, Coulaud D, Roques BP, Le Pecq JB . (1988). Selective loss of mitochondrial DNA after treatment of cells with ditercalinium (NSC 335153), an antitumor bis-intercalating agent. Cancer Res 48: 4982–4992.

    CAS  PubMed  Google Scholar 

  • Shimada K, Nakamura M, Ishida E, Kishi M, Matsuyoshi S, Konishi N . (2004). The molecular mechanism of sensitization to Fas-mediated apoptosis by 2-methoxyestradiol in PC3 prostate cancer cells. Mol Carcinog 39: 1–9.

    Article  Google Scholar 

  • Shokolenko IN, Alexeyev MF, Robertson FM, LeDoux SP, Wilson GL . (2003). The expression of Exonuclease III from E.coli in mitochondria of breast cancer cells diminishes mitochondrial DNA repair capacity and cell survival after oxidative stress. DNA Repair (Amst) 2: 471–482.

    Article  CAS  Google Scholar 

  • Singh KK, Russell J, Sigala B, Zhang Y, Williams J, Keshav KF . (1999). Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18: 6641–6646.

    Article  CAS  Google Scholar 

  • Singh KK, Sigala B, Sikder HA, Schwimmer C . (2001). Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res 29: 1381–1388.

    Article  CAS  Google Scholar 

  • Srere PA . (1968). Studies on purified citrate-enzymes: metabolic interpretations. Biochem Soc Symp 27: 11–21.

    CAS  PubMed  Google Scholar 

  • Tajiri T, Maki H, Sekiguchi M . (1995). Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res 336: 257–267.

    Article  CAS  Google Scholar 

  • Trounce IA, Kim YL, Jun AS, Wallace DC . (1996). Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264: 484–509.

    Article  CAS  Google Scholar 

  • Vidal AE, Hickson ID, Boiteux S, Radicella JP . (2001). Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res 29: 1285–1292.

    Article  CAS  Google Scholar 

  • Wallace DC . (1999). Mitochondrial diseases in man and mouse. Science 283: 1482–1488.

    Article  CAS  Google Scholar 

  • Wallace DC . (2000). Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J 139: S70–S85.

    Article  CAS  Google Scholar 

  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM . (1990). Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29: 7024–7032.

    Article  CAS  Google Scholar 

  • Yakes FM, Van Houten B . (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514–519.

    Article  CAS  Google Scholar 

  • Yang N, Galick H, Wallace SS . (2004). Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. DNA Repair (Amst) 3: 1323–1334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institutes of Health Grant 5-PO1CA 77664, titled ‘High Throughput Genetic Analysis of Bladder Cancer’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Sidransky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, A., Chang, X., Nagpal, J. et al. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from 2-methoxyestradiol-induced-mitochondria-dependent apoptosis. Oncogene 27, 3710–3720 (2008). https://doi.org/10.1038/onc.2008.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.3

Keywords

This article is cited by

Search

Quick links