Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA interference demonstrates a novel role for H2A.Z in chromosome segregation

Abstract

The histone variant H2A.Z plays an essential role in metazoans but its function remains to be determined. Here, we developed a new inducible RNAi strategy to elucidate the role of H2A.Z in mammalian cell lines. We show that in the absence of H2A.Z, the genome becomes highly unstable and that this instability is caused by defects in the chromosome segregation process. Analysis of H2A.Z localization reveals that in these cells it is enriched at heterochromatic foci with HP1α on the arms of chromosomes but not at centromeric regions. When H2A.Z is depleted, normal HP1α-chromatin interactions are disrupted on the chromosomal arms and, notably, also at pericentric regions. Therefore, H2A.Z controls the localization of HP1α. We conclude that H2A.Z is essential for the accurate transmission of chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducible inhibition of H2A.Z expression.
Figure 2: Inhibition of H2A.Z expression produces an unstable genome.
Figure 3: Chromosome segregation defects in H2A.Z siRNA-treated cells.
Figure 4: HP1α localization to the arms of chromosomes is lost in H2A.Z siRNA-treated cells.
Figure 5: Disruption of proper HP1α-chromatin interactions in the absence of H2A.Z.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Santisteban, M.S., Kalashnikova, T. & Smith, M.M. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103, 411–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Meneghini, M.D., Wu, M. & Madhani, H.D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Madigan, J.P., Chotkowski, H.L. & Glaser, R.L. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 30, 3698–3705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D.J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 22, 1599–1607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leach, T.J. et al. Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J. Biol. Chem. 275, 23267–23272 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ekwall, K., Cranston, G. & Allshire, R.C. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153, 1153–1169 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    Article  PubMed  Google Scholar 

  12. Cimini, D., Mattiuzzo, M., Torosantucci, L. & Degrassi, F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol. Biol. Cell 14, 3821–3833 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ekwall, K. et al. The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429–1431 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Carr, A.M. et al. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol. Gen. Genet. 245, 628–635 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Bernard, P. & Allshire, R. Centromeres become unstuck without heterochromatin. Trends Cell Biol. 12, 419–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Levesque, A.A. & Compton, D.A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adams, R.R., Carmena, M. & Earnshaw, W.C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Pinto, I. & Winston, F. Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J. 19, 1598–1612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de la Barre, A.E., Angelov, D., Molla, A. & Dimitrov, S. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation. EMBO J. 20, 6383–6393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan, J.Y., Gordon, F., Luger, K., Hansen, J.C. & Tremethick, D.J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat. Struct. Biol. 9, 172–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Minc, E., Allory, Y., Courvalin, J.C. & Buendia, B. Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci. 23, 171–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Gruss, O.J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. & Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932, (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Australian National Health and Medical Research Council to D.T. We thank P. Ridgway for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Tremethick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

H2A.Z expression can be inhibited by siRNA. (PDF 207 kb)

Supplementary Fig. 2

Inducible synthesis of H2A.Z siRNA. (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangasamy, D., Greaves, I. & Tremethick, D. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol 11, 650–655 (2004). https://doi.org/10.1038/nsmb786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing