Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

TAGging the target for damage control

The structure of TAG, a DNA repair enzyme, reveals how evolutionary changes in the sequence of a conserved scaffold may enrich the mechanistic diversity of the DNA HhH glycosylase superfamily through a unique coupling of catalysis to substrate selectivity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three-dimensional structure of TAG DNA glycosylase unveiling a cryptic member of the HhH glycosylase superfamily.
Figure 2: Stereoview of the TAG glycosylase active site.

References

  1. Surani, M.A. Nature 416, 491–493 (2002).

    Article  CAS  Google Scholar 

  2. Bird, A. Genes Dev. 16, 6–21 (2002).

    Article  CAS  Google Scholar 

  3. Lindahl, T. & Wood, R.D. Science 286, 1897–1905 (1999).

    Article  CAS  Google Scholar 

  4. Scharer, O.D. & Jiricny, J. BioEssays 23, 270–281 (2001).

    Article  CAS  Google Scholar 

  5. Wyatt, M.D., Allan, J.M., Lau, A.Y., Ellenberger, T.E. & Samson, L.D. BioEssays 21, 668–676 (1999).

    Article  CAS  Google Scholar 

  6. McCullough, A.K., Dodson, M.L. & Lloyd, R.S. Annu. Rev. Biochem. 68, 255–285 (1999).

    Article  CAS  Google Scholar 

  7. Hollis, T., Lau, A. & Ellenberger, T. Mutat Res. 460, 201–110 (2000).

    Article  CAS  Google Scholar 

  8. Thayer, M.M., Ahern, H., Xing, D., Cunningham, R.P. & Tainer, J.A. EMBO J. 14, 4108–4020 (1995).

    Article  CAS  Google Scholar 

  9. Barrett, T.E. et al. Cell 92, 117–129 (1998).

    Article  CAS  Google Scholar 

  10. Savva, R., McAuley-Hecht, K., Brown, T. & Pearl, L. Nature 373, 487–493 (1995).

    Article  CAS  Google Scholar 

  11. Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Cell 95, 249–258 (1998).

    Article  CAS  Google Scholar 

  12. Bruner, S.D., Norman, D.P. & Verdine, G.L. Nature 403, 859–866 (2000).

    Article  CAS  Google Scholar 

  13. Hollis, T., Ichikawa, Y. & Ellenberger, T. EMBO J. 19, 758–766 (2000).

    Article  CAS  Google Scholar 

  14. Guan, Y. et al. Nature Struct. Biol. 5, 1058–1064 (1998).

    Article  CAS  Google Scholar 

  15. Labahn, J. et al. Cell 86, 321–329 (1996).

    Article  CAS  Google Scholar 

  16. Yamagata, Y. et al. Cell 86, 311–319 (1996).

    Article  CAS  Google Scholar 

  17. Drohat, A.C., Kwon, K., Krosky, D.J. & Stivers, J.T. Nature Struct. Biol. 9, 659–664 (2002).

    Article  CAS  Google Scholar 

  18. Shao, X. & Grishin, N.V. Nucleic Acids Res. 28, 2643–2650 (2000).

    Article  CAS  Google Scholar 

  19. Doherty, A.J., Serpell, L.C. & Ponting, C.P. Nucleic Acids Res. 24, 2488–2497 (1996).

    Article  CAS  Google Scholar 

  20. Berdal, K.G., Johansen, R.F. & Seeberg, E. EMBO J. 17, 363–367 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.T. Stivers for providing the TAG coordinates, and A. Farooq for helping with figure preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, K., Zhou, MM. TAGging the target for damage control. Nat Struct Mol Biol 9, 638–640 (2002). https://doi.org/10.1038/nsb0902-638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0902-638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing