Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel variant of the catalytic triad in the Streptomyces scabies esterase

Abstract

The crystal structure of a novel esterase from Streptomyces scabies , a causal agent of the potato scab disease, was solved at 2.1 Å resolution. The tertiary fold of the enzyme is substantially different from that of the α/β hydrolase family and unique among all known hydrolases. The active site contains a dyad of Ser 14 and His 283, closely resembling two of the three components of typical Ser-His-Asp(Glu) triads from other serine hydrolases. Proper orientation of the active site imidazol is maintained by a hydrogen bond between the Nδ-H group and a main chain oxygen. Thus, the enzyme constitutes the first known natural variation of the chymotrypsin-like triad in which a carboxylic acid is replaced by a neutral hydrogen-bond acceptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blow, D.M., Birktoft, J.J. & Hartley, B.S. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature, 221, 337–340 (1969).

    Article  CAS  Google Scholar 

  2. Kraut, J. Serine proteases: structure and mechanism of catalysis. A. Rev. Biochem., 46, 331–358 (1977).

    Article  CAS  Google Scholar 

  3. Warshel, A., Naray-Szabo, G., Sussman, F. & Hwang, J.-K. How do serine proteases really work. Biochemistry, 28, 3629–3637 (1989).

    Article  CAS  Google Scholar 

  4. Pauling, L. Molecular architecture and biological reactions. Chem. Engng. News, 24, 1375–1377 (1946).

    Article  CAS  Google Scholar 

  5. Brady, L. et al. A serine protease triad forms the catalytic centre of a triglycerol lipase. Nature, 343, 767–770 (1990).

    Article  CAS  Google Scholar 

  6. Winkler, F.K., D'Arcy, A. & Hunziker, W. Structure of human pancreatic lipase. Nature, 343, 771–774 (1990).

    Article  CAS  Google Scholar 

  7. Schrag, J.D., Li, Y., Wu, S. & Cygler, M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351, 761–764 (1991).

    Article  CAS  Google Scholar 

  8. Sussman, J.L., et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253, 872–879 (1991).

    Article  CAS  Google Scholar 

  9. Lawson, D.M. et al. Structure of a myristoyl-ACP specific thioesterase from Vibrio harveyi. Biochemistry, 33, 9382–9388 (1994).

    Article  CAS  Google Scholar 

  10. Hecht, H.J., Sobek, H., Haag, T., Pfeifer, O. & Pée, K.-H. The metalion-free oxidoreductase from Streptomyces aureofadens has an α/β hydrolase fold. Nature struct. Biol. 1, 532–537 (1994).

    Article  CAS  Google Scholar 

  11. McQueen, D.A.R. & Schottel, J.L. Purification and characterization of a novel extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J. Bacteriol. 169, 1967–1971 (1987).

    Article  CAS  Google Scholar 

  12. Raymer, G., Willard, J.M.A. & Schottel, J.L. Cloning, sequencing and regulation of expression of an extracellular esterase gene from the plant pathogen Streptomyces scabies. J. Bacteriol. 172, 7020–7026 (1990).

    Article  CAS  Google Scholar 

  13. Ollis, D.L. et al. The α/β hydrolase fold. Prot. Engng. 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  14. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  15. Leszczynski, J.F. & Rose, G.D. Loops in globular proteins: a novel category of secondary structure. Science, 234, 849–855 (1988).

    Article  Google Scholar 

  16. Derewenda, Z.S. & Derewenda, U. Relationships among serine hydrolases: evidence for a common motif in triacylglyceride Upases and esterases. Biochem. cell Biol. 69, 842–851 (1991).

    Article  CAS  Google Scholar 

  17. Rogers, G.A. & Bruice, T.C. Synthesis and evaluation of a model for the so-called ‘charge relay’ system of the serine esterases. J. Am. chem. Soc. 96, 2473–2481 (1974).

    Article  CAS  Google Scholar 

  18. Zimmerman, S.C., Korthals, J.S. & Cramer, K.D. Syn and anti-oriented oriented imidazol carboxylates as models for the histidine-aspartate couple in serine proteases and other enzymes. Tetrahedron 47, 2649–2660 (1991).

    Article  CAS  Google Scholar 

  19. Markley, J.L. & Ibanez, I.B. Zymogen activation in serine proteinases. Proton magnetic resonanse pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aα . Biochemistry 17, 4627–4640 (1978).

    Article  CAS  Google Scholar 

  20. Kossiakoff, A.A. & Spencer, S.A. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron diffraction of trypsin. Biochemistry 20, 6462–6474 (1981).

    Article  CAS  Google Scholar 

  21. Sprang, S. et al. The three-dimensional structure of Asn 102 mutant of trypsin: role of Asp 102 in serine protease catalysis. Science 237, 905–909 (1987).

    Article  CAS  Google Scholar 

  22. Carter, P. & Wells, J.A. Dissecting the catalytic triad of a serine protease. Nature, 332, 564–568 (1988).

    Article  CAS  Google Scholar 

  23. Frey, P.A., Whitt, S.A. & Tobin, J.B. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science, 264, 1927–1930 (1994).

    Article  CAS  Google Scholar 

  24. Bachovchin, W.W. 15N NMR spectroscopy of hydrogen bonding interactions in the active sites of serine proteases: evidence for a moving histidine mechanism. Biochemistry 25, 7751–7759 (1986).

    Article  CAS  Google Scholar 

  25. Hibbert, F. & Elmsley, J. Hydrogen bonding and chemical reactivity. Adv. phys. org. Chem. 26, 255–379 (1990).

    CAS  Google Scholar 

  26. Derewenda, Z.S. & Wei, Y. Molecular mechanism of enantiorecognition by esterases. J. Am. chem. Soc. in the press.

  27. Derewenda, Z.S., Derewenda, U. & Kobos, P. Cε-H··O=C< hydrogen bond in the active sites of serine hydrolases. J. molec. Biol. 241, 83–93 (1994).

    Article  CAS  Google Scholar 

  28. Zhou, G.W., Guo, J., Huang, W., Fletterick, R.J. & Scanlan, T.S. Crystal structure of a catalytic antibody with a serine protease active site. Science, 265, 1059–1064 (1994).

    Article  CAS  Google Scholar 

  29. Green, R., Schottel, J.L., Swenson, L., Wei, Y. & Derewenda, Z.S. Crystallization and preliminary crystallographic data of a Streptomyces scabies extracellular esterase. J. molec. Biol. 227, 569–571 (1992).

    Article  CAS  Google Scholar 

  30. Howard, A.J. et al. The use of an imaging proportional counter in macromolecular crystallography. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  31. Sheldrick, G.M. Heavy atom location using SHELXS-90. in Proceedings of the CCP4 Study weekend, 23–38 (SERC Daresbury Laboratory, UK; 1991).

    Google Scholar 

  32. Otwinowski, Z. in Proceedings of the CCP4 study Weekend, 80–86 (SERC Daresbury Lab., UK; 1991).

    Google Scholar 

  33. Zhang, K.Y.J. SQUASH - Combining constraints for macromolecular phase refinement and extension. Acta crystallogr. D 49, 213–222 (1993).

    Google Scholar 

  34. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  35. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M.I. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Brunger, A.T X-PLOR Manual Version 3.1. (Yale Univ. Press, New Haven, CT, U.S.A; 1992).

    Google Scholar 

  37. Jones, T.A. A graphics model building and refinement system for macromolecules. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  38. Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Meths Enzymol. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  40. Carson, M. Ribbon models for macromolecules. J. molec. Graphics, 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  41. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. J. molec. Graphics. 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Schottel, J., Derewenda, U. et al. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Mol Biol 2, 218–223 (1995). https://doi.org/10.1038/nsb0395-218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0395-218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing