Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Different strategies for midline formation in bilaterians

Abstract

The evolutionary emergence of the bilateral body plan and the central nervous system required the establishment of a midline organizer. The formation of a solitary, elongated but narrow organizing region for the dorsoventral (or mediolateral) axis requires rather complex molecular interactions. Different modes of midline formation evolved in vertebrates, insects and planarians, indicating that midline formation had a crucial role in the diversification of higher organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypotheses for the transition from radially symmetrical to bilaterally symmetrical animals.
Figure 2: The problem of generating a stripe-shaped organizing region.
Figure 3: Vertebrate solution: midline formation by local elongation owing to a moving organizer.
Figure 4: Formation of a near-Cartesian coordinate system in the chick.
Figure 5: The insect solution: ventral midline formation by repression from a dorsal organizer.
Figure 6: Midline formation in Drosophila melanogaster.
Figure 7: Midline formation by repulsion from a circumventing border: the flatworm solution.

Similar content being viewed by others

References

  1. Udolf, G., Lüer, K., Bossing, T. & Technau, G. M. Commitment of the CNS progenitors along the dorsoventral axis of Drosophila neuroectoderm. Science 269, 1278–1281 (1995).

    Article  Google Scholar 

  2. Meinhardt, H. Models of Biological Pattern Formation (Academic, London, 1982) (electronic remake available at http://www.eb.tuebingen.mpg.de/meinhardt).

    Google Scholar 

  3. Arendt, D. & Nübler-Jung, K. Inversion of dorsoventral axis? Nature 371, 26 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in bilatera. Nature 380, 37–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Haeckel, E. The Gastraea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ lamellae. Q. J. Microsc. Sci. 14, 142–165 (1874).

    Google Scholar 

  6. Holland, N. D. Early central nervous system evolution: an era of skin brains? Nature Rev. Neurosci. 4, 617–627 (2003).

    Article  CAS  Google Scholar 

  7. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in bilateria. Nature 380, 37–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Erwin, D. H. & Davidson, E. H. The last common bilateral ancestor. Development 129, 3021–3032 (2002).

    CAS  PubMed  Google Scholar 

  9. Sedgewick, W. On the origin of metameric segmentation and other morphological questions. Q. J. Microsc. Sci. 24, 43–82 (1884).

    Google Scholar 

  10. Arendt, D. & Nübler-Jung, K. Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech. Dev. 61, 7–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. De Robertis, E. M. Evolving protostomes and deuterostomes. Nature 387, 25 (1997).

    PubMed  Google Scholar 

  12. Bruce, A. E. E. & Shankland, M. Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan. Dev. Biol. 201, 101–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, L. H. & Lengyel, J. A. Role of caudal in hindgut specification and gastrulation suggests homology between drosophila amnioproctodeal invagination and vertebrate blastopore. Development 125, 2433–2442 (1998).

    CAS  PubMed  Google Scholar 

  14. Holland, L. Z., Holland, N. D. & Schubert, M. Developmental expression of AmphiWnt1, an amphioxus gene in the Wnt1/wingless subfamily. Dev. Genes Evol. 210, 522–524 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kispert, A., Herrmann, B. G., Leptin, M. & Reuter, R. Homologs of the mouse brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8, 2137–2150 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Psychoyos, D. & Stern, C. D. Restoration of the organizer after radical ablation of Hensen's node and the anterior primitive streak an the chick embryo. Development 122, 3263–3273 (1996).

    CAS  PubMed  Google Scholar 

  17. Yuan, S., Darnell, D. K. & Schoenwolf, G. C. Mesodermal patterning during avian gastrulation and neurulation: experimental induction of notochord from non-notochordal precursor cells. Dev. Genet. 17, 38–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Levin, M. & Mercola, M. Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus. Dev. Genet. 23, 185–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. BioEssays 22, 753–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bisgrove, B. W., Essner, J. J. & Yost, H. J. Regulation of midline development by antagonism of lefty and nodal. Development 126, 3253–3262 (1999).

    CAS  PubMed  Google Scholar 

  22. Chen, Y. & Schier, A. F. Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr. Biol. 12, 2124–2128 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Branford, W. W. & Yost, H. J. Lefty-dependent inhibition of nodal- and wnt-responsive organizer is essential for normal gene expression gastrulation. Curr. Biol. 12, 2136–2141 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Meinhardt, H. Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development (Suppl.) 107, 169–180 (1989).

    PubMed  Google Scholar 

  25. Meinhardt, H. Growth and patterning — dynamics of stripe formation. Nature 376, 722–723 (1995).

    Article  CAS  Google Scholar 

  26. Hubel, D. H. & Wiesel, T. N. Functional architecture of the macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Kondo, S. & Asai, R. A viable reaction-diffusion wave on the skin of Pomacanthus, the marine Angelfish. Nature 376, 765–768 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Meinhardt, H. The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. BioEssays 24, 185–191 (2002).

    Article  PubMed  Google Scholar 

  29. Smith, K. M., Gee, L., Blitz, I. L. & Bode, H. R. CnOtx, a member of the Otx gene family, has a role in cell movement in hydra. Dev. Biol. 212, 392–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Schröder, R. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422, 621–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Grens, A., Gee, L., Fisher, D. A. & Bode, H. R. Cnnk-2, a nk-2 homeobox gene, has a role in patterning the basal end of the axis in hydra. Dev. Biol. 180, 473–488 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Saha, M. S., Michel, R. B., Gulding, K. M. & Grainger, R. M. A Xenopus homeobox gene defines dorsal-ventral domains in the developing brain. Development 118, 193–202 (1993).

    CAS  PubMed  Google Scholar 

  33. Venkatesh, T. V., Holland, N. D., Holland, L. Z., Su, M. T. & Bodmer, R. Sequence and developmental expression of amphioxus AmphiNk2-1: insights into the evolutionary origin of the vertebrate thyroid gland and forebrain. Dev. Genes Evol. 209, 254–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Zaffran, S., Das, G. & Frasch, M. The nk-2 homeobox gene scarecrow (scro) is expressed in pharynx, ventral nerve cord and brain of Drosophila embryos. Mech. Dev. 94, 237–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Shimizu, H. & Fujisawa, T. Peduncle of hydra and the heart of higher organisms share a common ancestral origin. Genesis 36, 182–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Mitgutsch, C., Hauser, F. & Grimmelikhuijzen, C. J. P. Expression and developmental regulation of the Hydra-RFamide and Hydra-LWamide preprohormone genes in Hydra: evidence for transient phases of head formation. Dev. Biol. 207, 189–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Technau, U. & Bode, H. R. HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development 126, 999–1010 (1999).

    CAS  PubMed  Google Scholar 

  38. Hobmayer, B. et al. Wnt signalling molecules act in axis formation in the diploblastic metazoan hydra. Nature 407, 186–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Broun, M., Sokol, S. & Bode, H. R. Cngsc, a homologue of goosecoid, participates in the patterning of the head, and is expressed in the organizer region of hydra. Development 126, 5245–5254 (1999).

    CAS  PubMed  Google Scholar 

  40. Niehrs, C., Keller, R., Cho, K. W. Y. & De Robertis, E. M. The homeobox gene Goosecoid controls cell-migration in Xenopus embryos. Cell 72, 491–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Herrmann, B. G. & Kispert, A. The T-genes in embryogenesis. Trends Genet. 10, 280–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, K. M., Gee, L. & Bode, H. R. HyAlx, an aristaless-related gene, is involved in tentacle formation in hydra. Development 127, 4743–4752 (2000).

    CAS  PubMed  Google Scholar 

  43. Mokady, O., Dick, M. H., Lackschewitz, D., Schierwater, B. & Buss, L. Over one-half billion years of head conservation? Expression of ems class genes in Hydractinia symbiolongicarpus. Proc. Natl Acad. Sci. USA 95, 3673–3678 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Finnerty, J. R. The origins of axial patterning in the metazoa: how old is bilateral symmetry. Int. J. Dev. Biol. 47, 523–529 (2003).

    PubMed  Google Scholar 

  45. Finnerty, J. R. & Martindale, M. Q. Ancient origins of axial patterning genes: Hox genes and Parahox genes in the Cnidaria. Evol. Dev. 1, 16–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hirth, F. et al. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130, 2365–2373 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Sprecher, S. G. & Reichert, H. The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod. Struct. Dev. 32, 141–156 (2003).

    Article  PubMed  Google Scholar 

  49. Ober, E. A. & Schulte-Merker, S. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev. Biol. 215, 167–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Wacker, S. A., McNulty, C. L. & Durston, A. J. The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev. Biol. 266, 123–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kiecker, C. & Niehrs, C. A morphogen gradient of wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189–4201 (2001).

    CAS  PubMed  Google Scholar 

  52. Nordström, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signalling. Nature Neurosci. 5, 525–532 (2002).

    Article  PubMed  Google Scholar 

  53. Dorsky, R. I., Itoh, M., Moon, R. T. & Chitnis, A. Two tcf3 genes cooperate to pattern the zebrafish brain. Development 130, 1937–1947 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Martin, V. J., Littlefield, C. L., Archer, W. E. & Bode, H. R. Embryogenesis in hydra. Biol. Bull. 192, 345–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Harland, R. & Gerhart, J. Formation and function of Spemanns organizer. Ann. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  56. Meinhardt, H. Organizer and axes formation as a self-organizing process. Int. J. Dev. Biol. 45, 177–188 (2001).

    CAS  PubMed  Google Scholar 

  57. Gierer, A. et al. Regeneration of hydra from reaggregated cells. Nature New Biol. 239, 98–101 (1972).

    Article  CAS  PubMed  Google Scholar 

  58. Nieuwkoop, P. D. The formation of the mesoderm in urodelean amphibians. VI. The self-organizing capacity of the induced meso-endoderm. Roux's Arch. Dev. Biol. 201, 18–29 (1992).

    Article  Google Scholar 

  59. Khaner, O. & Eyal-Giladi, H. The chick's marginal zone and primitive streak formation. I. Coordinative effect of induction and inhibition. Dev. Biol. 134, 206–214 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Kiecker, C. & Niehrs, C. The role of prechordal mesendoderm in neural patterning. Curr. Op. Neurobiol. 11, 27–33 (2000).

    Article  Google Scholar 

  61. Schulte-Merker, S. et al. Expression of zebrafish goosecoid and no tail gene-products in wild-type and mutant no tail embryos. Development 120, 843–852 (1994).

    CAS  PubMed  Google Scholar 

  62. Artinger, M., Blitz, I., Inoue, K., Tran, U. & Cho, K. W. Y. Interaction of Goosecoid and Brachyury in Xenopus mesoderm patterning. Mech. Dev. 65, 187–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Zoltewicz, J. S. & Gerhart, J. C. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev. Biol. 192, 482–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Lane, M. C. & Sheets, M. D. Rethinking axial patterning in amphibians. Dev. Dyn. 225, 434–447 (2002).

    Article  PubMed  Google Scholar 

  65. Muñoz-Sanjuan, I. & Brivanlou, A. H. Early posterior/ventral fate specification in the vertebrate embryo. Dev. Biol. 237, 1–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquie, O. Avian hairy gene-expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Pourquie, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Zákány, J., Kmita, M., Alarcon, P., de la Pompa, L. J. & Duboule, D. Localized and transient transcription of hox genes suggests a link between patterning and the segmentation clock. Cell 106, 207–217 (2001).

    Article  PubMed  Google Scholar 

  69. Dubrulle, J., McGrew, M. J. & Pourquie, O. Fgf signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal hox gene activation. Cell 106, 219–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Joyner, A. L., Liu, A. & Millet, S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr. Op. Cell Biol. 12, 736–741 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric HoxB4 expression requires induction by somites and a retinoic acid pathway. Neuron 21, 39–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Grapin-Botton, A., Bonnin, M. A., Sieweke, M. & Le Douarin, N. M. Defined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain. Development 125, 1173–1181 (1998).

    CAS  PubMed  Google Scholar 

  73. Chen, G., Handel, K. & Roth, S. The maternal nf-κb/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127, 5145–5156 (2000).

    CAS  PubMed  Google Scholar 

  74. Anderson, K. V. Pinning down positional information — dorsal-ventral polarity in the Drosophila embryo. Cell 95, 439–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Roth, S. The origin of dorsoventral polarity in Drosophila. Phil. Trans. R. Soc. Lond. B 358, 1317–1329 (2003).

    Article  CAS  Google Scholar 

  76. van Eeden, F. & St Johnston, D. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr. Op. Genetics Dev. 9, 396–404 (1999).

    Article  CAS  Google Scholar 

  77. Roth, S., Jordan, P. & Karess, R. Binuclear Drosophila oocytes: consequences and implications for dorsal-ventral patterning in oogenesis and embryogenesis. Development 126, 927–934 (1999).

    CAS  PubMed  Google Scholar 

  78. Roth, S., Neuman-Silberberg, F. S., Barcelo, G. & Schüpbach, T. Cornichon and the egf receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern-formation in Drosophila. Cell 81, 967–978 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Wasserman, J. D. & Freeman, M. An autoregulatory cascade of Egf receptor signaling patterns the Drosophila egg. Cell 95, 355–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Nilson, L. A. & Schüpbach, T. Localized requirements for windbeutel and pipe reveal a dorsoventral prepattern within the follicular epithelium of the Drosophila ovary. Cell 93, 253–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Sen, J., Goltz, J. S., Stevens, L. & Stein, D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471–481 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Peri, F., Technau, M. & Roth, S. Mechanisms of gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 129, 2965–2975 (2002).

    CAS  PubMed  Google Scholar 

  83. Roth, S. & Schüpbach, T. The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. Development 120, 2245–2257 (1994).

    CAS  PubMed  Google Scholar 

  84. Morgan, T. H. Regeneration (Macmillan, New York, 1901).

    Book  Google Scholar 

  85. Baguñá, J. et al. Regeneration and pattern-formation in planarians-cells, molecules and genes. Zool. Sci. 11, 781–795 (1994).

    Google Scholar 

  86. Agata, K., Tanaka, T., Kobayashi, C., Kato, K. & Saitoh, Y. Intercalary regeneration in planarians. Dev. Dyn. 226, 308–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Chandebois, R. The dynamics of wound closure and its role in the programming of planarian regeneration. Develop. Growth Differ. 21, 195–204 (1979).

    Article  Google Scholar 

  88. Kato, K., Orii, H., Watanabe, K. & Agata, K. Dorsal and ventral positional cues required for the onset of planarian regeneration may reside in differentiated cells. Dev. Biol. 233, 109–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Henry, J. Q., Mardindale, Q. & Boyer, B. C. The unique developmental program of the acoel flatworm, Neochildia fusca. Dev. Biol. 220, 285–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Orii, H., Kato, K., Agata, K. & Watanabe, K. Molecular cloning of bone morphogenetic protein (BMP) gene from the planarian Dugesia japonica. Zool. Sci. 15, 871–877 (1998).

    Article  CAS  Google Scholar 

  91. Hild, M. et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126, 2149–2159 (1999).

    CAS  PubMed  Google Scholar 

  92. Martyn, U. & Schulte-Merker, S. The ventralizing ogon mutant phenotype is caused by the zebrafisch homologue of Sizzled, a secreted Frizzled-related protein. Dev. Biol. 260, 58–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Irvine, K. D. & Rauskolb, C. Boundaries in development: formation and function. Ann. Rev. Cell Dev. Biol. 17, 189–214 (2001).

    Article  CAS  Google Scholar 

  94. Waites, R. & Hudson, A. phantastica: a gene required for dorsoventrality in leaves in Antirrhinum majus. Development 121, 2143–2154 (1995).

    CAS  Google Scholar 

  95. Bowman, J. L., Eshed, Y. & Baum, S. F. Establishment of polarity in angiosperm lateral organs. Trends Genet. 18, 134–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Meinhardt, H. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375–385 (1983).

    Article  CAS  PubMed  Google Scholar 

  97. Koch, A. J. & Meinhardt, H. Biological pattern-formation — from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481–1507 (1994).

    Article  Google Scholar 

  98. Holley, S. A. et al. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Hayward, D. C. et al. Localized expression of a dpp/bmp2/4 ortholog in a coral embryo. Proc. Natl Acad. Sci. USA 99, 8106–8111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chatterjee, S., Lahudkar, S., Godbole, N. N. & Ghaskadbi, S. Hydra constitutively expresses transcripts involved in vertebrate neural differentiation. J. Biosci. 26, 153–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Reinhardt, B., Broun, M., Blitz, I. L. & Bode, H. R. HyBMP5-8b, a BMP5–8 orthologue, acts during axial patterning and tentacle formation in hydra. Dev. Biol. 267, 43–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Gerhart, J. Inversion of the chordate body axis: are there alternatives? Proc. Natl Acad. Sci. USA 97, 4445–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lacalli, T. C. Dorsoventral axis inversion. Nature 373, 110–111 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. van den Biggelaar, J. A. M., Edsinger-Gonzales, E. & Schram, F. R. The improbability of dorso-ventral axis inversion during animal evolution, as presumed by Geoffroy Saint Hilaire. Contrib. Zool. 71, 29–36 (2002).

    Google Scholar 

  105. Keller, R., Shih, J. & Sater, A. The cellular basis of the convergence and extension of the Xenopus neural plate. Dev. Dyn. 193, 199–217 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

CnidBase

aristaless

β-catenin

ems

goosecoid

Nkx2.5

Otx

Tcf

Wnt

Entrez Gene

Brachyury

chordin

Gurken

nodal

lefty2

Krox20

pipe

SUPPLEMENTARY INFORMATION

S1 (simulation)

S2 (simulation)

S3 (simulation)

S4 (simulation)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinhardt, H. Different strategies for midline formation in bilaterians. Nat Rev Neurosci 5, 502–510 (2004). https://doi.org/10.1038/nrn1410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing