Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium

Key Points

  • This Review analyses recent advances in our understanding of the cell biology and genetics of Streptomyces growth and developmental morphogenesis, focusing mainly on Streptomyces coelicolor as a model organism. The major topics discussed are:

  • The molecular basis of the apical growth and branching of hyphae.

  • The morphogenetic processes that allow hyphae to break surface tension and grow into the air.

  • The role of the hormone-like γ-butyrolactone signalling molecule, A-factor, in the regulation of aerial mycelium formation and its integration with secondary metabolism in Streptomyces griseus.

  • The developmental reorganization of cytoskeletal elements, cell division, chromosome segregation and peptidoglycan assembly that leads to the conversion of aerial hyphae into mature spores, and what is known about the regulation of these processes.

  • Recent advances in the study of cell type-specific gene expression in Streptomyces, and new tools and systems that will facilitate the investigation of Streptomyces developmental biology.

Abstract

During the life cycle of the filamentous bacteria Streptomyces, morphological differentiation is closely integrated with fundamental growth and cell-cycle processes, as well as with truly complex multicellular behaviour that involves hormone-like extracellular signalling and coordination with an extraordinarily diverse secondary metabolism. Not only are the bacterial cytoskeleton and the machineries for cell-wall assembly, cell division and chromosome segregation reorganized during sporulation, but the developmental programme of these fascinating organisms also has many unusual elements, including the formation of a sporulating aerial mycelium and the production of a surfactant peptide and a hydrophobic sheath that allow cells to escape from the surface tension of the growth medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental life cycle of Streptomyces coelicolor.
Figure 2: Model for the biosynthesis of the lantibiotic-like surfactant peptide SapB.
Figure 3: Model for the role of the chaplins and SapB in morphogenesis.
Figure 4: The A-factor signalling cascade triggers morphological differentiation and secondary metabolism in Streptomyces griseus.
Figure 5: Reorganization of cell biological processes during differentiation of aerial hyphae into spores.
Figure 6: Patterns of cell type-specific gene expression in sporulating aerial hyphae.

Similar content being viewed by others

References

  1. Hopwood, D. A. Streptomyces in Nature and Medicine (Oxford Univ. Press, New York, 2007). An excellent account of the history of Streptomyces research by the founder of S. coelicolor genetics.

    Google Scholar 

  2. Flärdh, K. Growth polarity and cell division in Streptomyces. Curr. Opin. Microbiol. 6, 564–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Flärdh, K. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol. Microbiol. 49, 1523–1536 (2003). The first demonstration of the key role of DivIVA in cell polarity in Streptomyces.

    Article  CAS  PubMed  Google Scholar 

  4. Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Carballido-Lopez, R. The bacterial actin-like cytoskeleton. Microbiol. Mol. Biol. Rev. 70, 888–909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thanbichler, M. & Shapiro, L. Getting organized — how bacterial cells move proteins and DNA. Nature Rev. Microbiol. 6, 28–40 (2008).

    Article  CAS  Google Scholar 

  7. Mazza, P. et al. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol. Microbiol. 60, 838–852 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen, L. et al. Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J. Bacteriol. 189, 7896–7910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Letek, M. et al. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J. Bacteriol. 190, 3283–3292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hett, E. C. & Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72, 126–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W. & Husson, R. N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154, 725–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hempel, A. M., Wang, S., Letek, M., Gil, J. A. & Flärdh, K. DivIVA marks sites for hyphal branching and can establish new zones of cell wall growth in Streptomyces coelicolor. J. Bacteriol. 90, 7579–7583 (2008).

    Article  CAS  Google Scholar 

  13. McCormick, J. R., Su, E. P., Driks, A. & Losick, R. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14, 243–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, H., Chater, K. F., Deng, Z. & Tao, M. A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in Streptomyces. J. Bacteriol. 190, 4971–4978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reuther, J., Gekeler, C., Tiffert, Y., Wohlleben, W. & Muth, G. Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol. Microbiol. 61, 436–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Elliot, M. A., Buttner, M. J. & Nodwell, J. R. in Myxobacteria: Multicellularity and Differentiation (ed. Whitworth, D. E) 419–438 (ASM, Herndon, 2008). The most comprehensive recent review of the molecular genetics and cell biology of sporulation in Streptomyces.

    Google Scholar 

  17. Willey, J. M., Willems, A., Kodani, S. & Nodwell, J. R. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59, 731–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Elliot, M. A. & Talbot, N. J. Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr. Opin. Microbiol. 7, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Hopwood, D. A. & Glauert, A. M. Electron microscope observations on the surface structures of Streptomyces violaceoruber. J. Gen. Microbiol. 26, 325–330 (1961).

    Article  CAS  PubMed  Google Scholar 

  20. Wildermuth, H., Wehrli, E. & Horne, R. W. The surface structure of spores and aerial mycelium in Streptomyces coelicolor. J. Ultrastruct. Res. 35, 168–180 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. Willey, J., Santamaria, R., Guijarro, J., Geistlich, M. & Losick, R. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65, 641–650 (1991). A classic paper that reported the identification of the secreted morphogenetic surfactant peptide, SapB, and showed that SapB production is blocked in bld mutants and that the application of purified SapB restores aerial mycelium formation to a bld mutant.

    Article  CAS  PubMed  Google Scholar 

  22. Willey, J., Schwedock, J. & Losick, R. Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev. 7, 895–903 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002). A landmark paper which described the discoveries that have been made from the complete genome sequencing of the model species S. coelicolor A3(2).

    Article  PubMed  Google Scholar 

  24. Kodani, S. et al. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl Acad. Sci. USA 101, 11448–11453 (2004). Seminal paper that described the biochemical and genetic characterization of the SapB surfactant peptide, which plays a key part in Streptomyces development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keijser, B. J., van Wezel, G. P., Canters, G. W. & Vijgenboom, E. Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J. Bacteriol. 184, 4420–4429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, K. T. et al. A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol. Microbiol. 46, 1223–1238 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. O'Connor, T. J., Kanellis, P. & Nodwell, J. R. The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol. Microbiol. 45, 45–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. O'Connor, T. J. & Nodwell, J. R. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J. Mol. Biol. 351, 1030–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, H. & Kendall, K. Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J. Bacteriol. 176, 3800–3811 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Capstick, D. S., Willey, J. M., Buttner, M. J. & Elliot, M. A. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol. Microbiol. 64, 602–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Ueda, K. et al. AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J. Bacteriol. 184, 1488–1492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elliot, M. A. et al. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17, 1727–1740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Claessen, D. et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726 (2003). References 32 and 33 describe the biochemical and genetic characterization of the chaplins, the major components of the hydrophobic sheath that surrounds the aerial hyphae and spores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DiBerardo, C. et al. Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J. Bacteriol. 190, 5879–5889 (2008).

    Article  CAS  Google Scholar 

  35. Claessen, D. et al. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 53, 433–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Tillotson, R. D., Wosten, H. A., Richter, M. & Willey, J. M. A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol. Microbiol. 30, 595–602 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Claessen, D. et al. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol. Microbiol. 44, 1483–1492 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Nodwell, J. R., McGovern, K. & Losick. R. An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol. Microbiol. 22, 881–893 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Nodwell, J. R. & Losick, R. Purification of an extracellular signalling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J. Bacteriol. 180, 1334–1337 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishida, H., Ohnishi, Y., Beppu, T. & Horinouchi, S. Evolution of γ-butyrolactone synthases and receptors in Streptomyces. Environ. Microbiol. 9, 1986–1994 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Chater, K. F. & Horinouchi, S. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48, 9–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Takano, E. γ-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9, 287–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Horinouchi, S. Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci. Biotechnol. Biochem. 71, 283–299 (2007). An excellent summary of the A-factor signalling cascade that triggers both morphological differentiation and secondary metabolism in S. griseus.

    Article  CAS  PubMed  Google Scholar 

  44. Horinouchi, S. in Chemical Communication among Bacteria (eds Winans, S. C. & Bassler, B. L.) 363–377 (ASM, Herndon, 2008).

    Book  Google Scholar 

  45. Ohnishi, Y., Yamazaki, H., Kato, J. Y., Tomono, A. & Horinouchi, S. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69, 431–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Yamazaki, H., Ohnishi, Y. & Horinouchi, S. An A-factor-dependent extracytoplasmic function σ factor (σAdsA) that is essential for morphological development in Streptomyces griseus. J. Bacteriol. 182, 4596–4605 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamazaki, H., Ohnishi, Y. & Horinouchi, S. Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J. Bacteriol. 185, 1273–1283 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamazaki, H., Takano, Y., Ohnishi, Y. & Horinouchi, S. amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 50, 1173–1187 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Ueda, K., Takano, H., Nishimoto, M., Inaba, H. & Beppu, T. Dual transcriptional control of amfTSBA, which regulates the onset of cellular differentiation in Streptomyces griseus. J. Bacteriol. 187, 135–142 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Wezel, G. P. et al. ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J. Bacteriol. 182, 5653–5662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang, H. & Kendrick, K. E. Characterization of ssfR and ssgA, two genes involved in sporulation of Streptomyces griseus. J. Bacteriol. 182, 5521–5529 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takano, E. et al. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol. Microbiol. 50, 475–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Bibb, M. J., Molle, V. & Buttner, M. J. σBldN, an extracytoplasmic function RNA polymerase σ factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J. Bacteriol. 182, 4606–4616 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bibb, M. J. & Buttner, M. J. The Streptomyces coelicolor developmental transcription factor σBldN is synthesized as a pro-protein. J. Bacteriol. 185, 2338–2345 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamazaki, H., Tomono, A., Ohnishi, Y. & Horinouchi, S. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 53, 555–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, 1159–1166 (2005).

    CAS  Google Scholar 

  57. Flärdh, K., Findlay, K. C. & Chater, K. F. Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145, 2229–2243 (1999).

    Article  PubMed  Google Scholar 

  58. Ruban-Osmialowska, B., Jakimowicz, D., Smulczyk-Krawczyszyn, A., Chater, K. F. & Zakrzewska-Czerwinska, J. Replisome localization in vegetative and aerial hyphae of Streptomyces coelicolor. J. Bacteriol. 188, 7311–7316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Del Sol, R., Pitman, A., Herron, P. & Dyson, P. The product of a developmental gene, crgA, that coordinates reproductive growth in Streptomyces belongs to a novel family of small actinomycete-specific proteins. J. Bacteriol. 185, 6678–6685 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Del Sol, R., Mullins, J. G., Grantcharova, N., Flärdh, K. & Dyson, P. Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J. Bacteriol. 188, 1540–1550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chater, K. F. & Chandra, G. The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30, 651–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Schwedock, J., McCormick, J. R., Angert, E. A., Nodwell, J. R. & Losick, R. Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25, 847–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nature Rev. Mol. Cell Biol. 6, 862–871 (2005).

    Article  CAS  Google Scholar 

  64. McCormick, J. R. & Losick, R. Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3(2). J. Bacteriol. 178, 5295–5301 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bennett, J. A., Aimino, R. M. & McCormick, J. R. Streptomyces coelicolor genes ftsL and divIC play a role in cell division but are dispensable for colony formation. J. Bacteriol. 189, 8982–8992 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mistry, B. V., Del Sol, R., Wright, C., Findlay, K. & Dyson, P. J. FtsW is a dispensable cell division protein required for Z-ring stabilisation during septation in Streptomyces coelicolor. J. Bacteriol. 190, 5555–5566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Datta, P., Dasgupta, A., Bhakta, S. & Basu, J. Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J. Biol. Chem. 277, 24983–24987 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Datta, P. et al. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol. Microbiol. 62, 1655–1673 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Thanbichler, M. & Shapiro, L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126, 147–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Flärdh, K., Leibovitz, E., Buttner, M. J. & Chater, K. F. Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Mol. Microbiol. 38, 737–749 (2000).

    Article  PubMed  Google Scholar 

  75. Kwak, J., Dharmatilake, A. J., Jiang, H. & Kendrick, K. E. Differential regulation of ftsZ transcription during septation of Streptomyces griseus. J. Bacteriol. 183, 5092–5101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grantcharova, N., Lustig, U. & Flärdh, K. Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 187, 3227–3237 (2005). This paper shows that during differentiation of aerial hyphae, dynamic, helical FtsZ filaments are detected along the length of the sporogenic cell and are subsequently remodelled into several dozen regularly spaced FtsZ rings that direct sporulation septation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Thanedar, S. & Margolin, W. FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr. Biol. 14, 1167–1173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peters, P. C., Migocki, M. D., Thoni, C. & Harry, E. J. A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis. Mol. Microbiol. 64, 487–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Osawa, M., Anderson, D. E. & Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science 320, 792–794 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grantcharova, N., Ubhayasekera, W., Mowbray, S. L., McCormick, J. R. & Flärdh, K. A missense mutation in ftsZ differentially affects vegetative and developmentally controlled cell division in Streptomyces coelicolor A3(2). Mol. Microbiol. 47, 645–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Molle, V., Palframan, W. J., Findlay, K. C. & Buttner, M. J. WhiD and WhiB, homologous proteins required for different stages of sporulation in Steptomyces coelicolor A3(2). J. Bacteriol. 182, 1286–1295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawamoto, S., Watanabe, H., Hesketh, A., Ensign, J. C. & Ochi, K. Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. Microbiology 143, 1077–1086 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Noens, E. E. et al. Loss of the controlled localization of growth stage-specific cell-wall synthesis pleiotropically affects developmental gene expression in an ssgA mutant of Streptomyces coelicolor. Mol. Microbiol. 64, 1244–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. van Wezel, G. P. et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl. Environ. Microbiol. 72, 5283–5288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Keijser, B. J., Noens, E. E., Kraal, B., Koerten, H. K. & van Wezel, G. P. The Streptomyces coelicolor ssgB gene is required for early stages of sporulation. FEMS Microbiol. Lett. 225, 59–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Noens, E. E. et al. SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol. Microbiol. 58, 929–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Michie, K. A. & Löwe, J. Dynamic filaments of the bacterial cytoskeleton. Annu. Rev. Biochem. 75, 467–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Kim, H. J., Calcutt, M. J., Schmidt, F. J. & Chater, K. F. Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J. Bacteriol. 182, 1313–1320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jakimowicz, D., Zydek, P., Kois, A., Zakrzewska-Czerwinska, J. & Chater, K. F. Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Mol. Microbiol. 65, 625–641 (2007). Shows that ParA assembles into long helical filaments that seem to provide a scaffold for the correct distribution of ParB– oriC complexes along the sporogenic cell, thereby organizing the synchronized segregation of several tens of chromosomes as the sporogenic cell differentiates into a long chain of unigenomic spores.

    Article  CAS  PubMed  Google Scholar 

  91. Jakimowicz, D., Mouz, S., Zakrzewska-Czerwinska, J. & Chater, K. F. Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J. Bacteriol. 188, 1710–1720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jakimowicz, D., Chater, K. & Zakrzewska-Czerwinska, J. The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol. Microbiol. 45, 1365–1377 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Jakimowicz, D., Gust, B., Zakrzewska-Czerwinska, J. & Chater, K. F. Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae. J. Bacteriol. 187, 3572–3580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ebersbach, G. et al. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol. Microbiol. 61, 1428–1442 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Wenner, T. et al. End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens. Mol. Microbiol. 50, 411–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, L. et al. Role of an FtsK-like protein in genetic stability in Streptomyces coelicolor A3(2). J. Bacteriol. 189, 2310–2318 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ausmees, N. et al. SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol. Microbiol. 65, 1458–1473 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, C. W., Huang, C. H., Lee, H. H., Tsai, H. H. & Kirby, R. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet. 18, 522–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Bigot, S., Sivanathan, V., Possoz, C., Barre, F. X. & Cornet, F. FtsK, a literate chromosome segregation machine. Mol. Microbiol. 64, 1434–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Hendrickson, H. & Lawrence, J. G. Selection for chromosome architecture in bacteria. J. Mol. Evol. 62, 615–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, M. C. & Losick, R. Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor. J. Bacteriol. 183, 5180–5186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rudner, D. Z., Pan, Q. & Losick, R. M. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc. Natl Acad. Sci. USA 99, 8701–8706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wildermuth, H. & Hopwood, D. A. Septation during sporulation in Streptomyces coelicolor. J. Gen. Microbiol. 60, 51–59 (1970).

    Article  CAS  PubMed  Google Scholar 

  104. Potúcková, L. et al. A new RNA polymerase σ factor, σF, is required for the late stages of morphological differentiation in Streptomyces sp. Mol. Microbiol. 17, 37–48 (1995).

    Article  PubMed  Google Scholar 

  105. Sun, J., Kelemen, G. H., Fernandez-Abalos, J. M. & Bibb, M. J. Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145, 2221–2227 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Han, L., Khetan, A., Hu, W. S. & Sherman, D. H. Time-lapsed confocal microscopy reveals temporal and spatial expression of the lysine epsilon-aminotransferase gene in Streptomyces clavuligerus. Mol. Microbiol. 34, 878–886 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Nguyen, K. D., Au-Young, S. H. & Nodwell, J. R. Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 58, 167–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Kelemen, G. H. et al. The positions of the σ factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol. Microbiol. 21, 593–603 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Kelemen, G. H. et al. Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3(2). J. Bacteriol. 180, 2515–2521 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kelemen, G. H. et al. A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol. Microbiol. 40, 804–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Viollier, P. H. et al. Specialized osmotic stress response systems involve multiple SigB-like σ factors in Streptomyces coelicolor. Mol. Microbiol. 47, 699–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Viollier, P. H., Weihofen, A., Folcher, M. & Thompson, C. J. Post-transcriptional regulation of the Streptomyces coelicolor stress responsive σ factor, SigH, involves translational control, proteolytic processing, and an anti- σ factor homolog. J. Mol. Biol. 325, 637–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Elliot, M. A., Bibb, M. J., Buttner, M. J. & Leskiw, B. K. BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol. Microbiol. 40, 257–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Dalton, K. A., Thibessard, A., Hunter, J. I. & Kelemen, G. H. A novel compartment, the 'subapical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol. Microbiol. 64, 719–737 (2007). This excellent paper reports the discovery of a previously unidentified compartment below the apical sporogenic cell, termed the subapical stem, and a molecular marker that is specific for this compartment.

    Article  CAS  PubMed  Google Scholar 

  115. Chater, K. F. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47, 685–713 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Chater, K. F. Taking a genetic scalpel to the Streptomyces colony. Microbiology 144, 1465–1478 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Chater, K. F. in Prokaryotic Development (eds Brun, Y. V. & Shimkets, L. J.) 33–48 (ASM, Washington, 1999).

    Google Scholar 

  118. Chater, K. F. Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr. Opin. Microbiol. 4, 667–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Tian, Y., Fowler, K., Findlay, K., Tan, H. & Chater, K. F. An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J. Bacteriol. 189, 2873–2885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Knizewski, L. & Ginalski, K. Bacterial DUF199/COG1481 proteins including sporulation regulator WhiA are distant homologs of LAGLIDADG homing endonucleases that retained only DNA binding. Cell Cycle 6, 1666–1670 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Xie, Z., Li, W., Tian, Y., Liu, G. & Tan, H. Identification and characterization of sawC, a whiA-like gene, essential for sporulation in Streptomyces ansochromogenes. Arch. Microbiol. 188, 575–582 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. den Hengst, C. & Buttner M. J. Redox control in actinobacteria. Biochem. Biophys. Acta 1780, 1201–1216 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Gao, B., Paramanathan, R. & Gupta, R. S. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 90, 69–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Jakimowicz, P. et al. Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe–4S] cluster. J. Biol. Chem. 280, 8309–8315 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Alam, M. S., Garg, S. K. & Agrawal, P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe–4S] cluster co-ordinating protein disulphide reductase. Mol. Microbiol. 63, 1414–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Singh, A. et al. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe–4S] cluster and is essential for nutrient starvation survival. Proc. Natl Acad. Sci. USA 104, 11562–11567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garg, S. K., Alam, M. S., Soni, V., Kishan, K. V. R. & Agrawal, P. Characterization of Mycobacterium tuberculosis WhiB1/Rv3219 as a protein disulfide reductase. Protein Expr. Purif. 52, 422–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Traag, B. A. & van Wezel, G. P. The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie van Leeuwenhoek 94, 85–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Del Sol R., Armstrong, I., Wright, C. & Dyson, P. Characterization of changes to the cell surface during the life cycle of Streptomyces coelicolor: atomic force microscopy of living cells. J. Bacteriol. 189, 2219–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Glazebrook, M. A., Doull, J. L., Stuttard, C. & Vining, L. C. Sporulation of Streptomyces venezuelae in submerged cultures. J. Gen. Microbiol. 136, 581–588 (1990).

    Article  CAS  PubMed  Google Scholar 

  131. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl Acad. Sci. USA 100, 1541–1546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stuttard, C. Transduction of auxotrophic markers in a chloramphenicol-producing strain of Streptomyces. J. Gen. Microbiol. 110, 479–482 (1979).

    Article  CAS  PubMed  Google Scholar 

  133. Ohnishi, Y. et al. The genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060 (2008). Describes the complete genome sequence of S. griseus , the model Streptomyces species for dissecting the role of γ-butyrolactone signalling in the control of morphological differentiation and secondary metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kato, J. Y., Funa, N., Watanabe, H., Ohnishi, Y. & Horinouchi S. Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc. Natl Acad. Sci. USA 104, 2378–2383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tomono, A. et al. Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 187, 5595–5604 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Higashi, T., Iwasaki, Y., Ohnishi, Y. & Horinouchi, S. A-factor and phosphate depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J. Bacteriol. 189, 3515–3524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Elliot, J. Willey, D. Claessen, G. Kelemen, M. Bibb, Y. Ohnishi, G. Muth, J. Errington and K. Chater for their comments on the manuscript, and M. Hempel and A. Hempel for helping with the figures. We apologize to colleagues whose work has not been cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Buttner.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Corynebacterium glutamicum

Escherichia coli

Mycobacterium smegmatis

Mycobacterium tuberculosis

Streptomyces avermitilis

Streptomyces coelicolor

Streptomyces griseus

FURTHER INFORMATION

Mark J. Buttner's homepage

Klas Flärdh's homepage

Epicentre Biotechnologies

Verenium Corporation

Glossary

Vegetative mycelium

The dense, branching network of hyphae that arises in the medium after spore germination (also called the substrate mycelium).

Saprophyte

An organism that degrades and feeds on dead organisms or decaying organic material, especially in soil.

Germ tube

The vegetative hypha that emerges from spores during germination.

Vancomycin

An antibiotic that inhibits cell-wall biosynthesis by binding to peptidoglycan precursor lipid II when lipid II is exposed on the external face of the cytoplasmic membrane.

FtsK family

A family of ATP-dependent DNA translocases that are important in chromosome segregation and intercellular DNA transfer.

γ-butyrolactones

A class of hormone-like signalling molecules made by streptomycetes. γ-butyrolactones are similar in structure to the homoserine lactones that are involved in quorum sensing in Gram-negative bacteria.

Grixazone

A yellow secondary metabolite that contains a phenoxazinone chromophore made by Streptomyces griseus.

Hexahydroxyperyl-enequinone

(HPQ). A polyketide secondary metabolite made by Streptomyces griseus that readily autopolymerizes to form HPQ melanin.

Hyphal cross-wall

An infrequent vegetative septum observed in substrate hyphae and occasionally in aerial hyphae. Hyphal cross-walls are not associated with constriction and cell separation (in contrast to sporulation septa).

σB-like stress response sigma factor

A sigma factor that is closely related, phylogenetically and functionally, to σB, which controls the general stress response in Bacillus subtilis.

Z ring

A ring of the cytoskeletal tubulin-like protein FtsZ that is formed at the beginning of cytokinesis and defines the site of cell division.

Walker A cytoskeletal ATPase

A group of Walker ATPases that possess a distinct version of the Walker A motif that deviates from the universal consensus. These proteins share structural similarity with P-loop GTPases and are recognized as members of the GTPase superfamily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flärdh, K., Buttner, M. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7, 36–49 (2009). https://doi.org/10.1038/nrmicro1968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing