Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development

Abstract

Multicellular bacterial communities (biofilms) abound in nature, and their successful formation and survival is likely to require cell–cell communication — including quorum sensing — to co-ordinate appropriate gene expression. The only mode of quorum sensing that is shared by both Gram-positive and Gram-negative bacteria involves the production of the signalling molecule autoinducer 2 by LuxS. A survey of the current literature reveals that luxS contributes to biofilm development in some bacteria. However, inconsistencies prevent biofilm development being attributed to the production of AI2 in all cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The metabolites of the activated methyl cycle and related pathways.
Figure 2: Export and import of activated-methyl-cycle-linked molecules.

Similar content being viewed by others

References

  1. Palmer, R. J. Jr, Kazmerzak, K., Hansen, M. C. & Kolenbrander, P. E. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69, 5794–5804 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Tan, L. & Darby, C. A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J. Bacteriol. 186, 5087–5092 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams, P., Winzer, K., Chan, W. C. & Cámara, M. Look who's talking: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B 362, 1119 (2007).

    Article  CAS  Google Scholar 

  5. Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol. 5, 230 (2007).

    Article  CAS  Google Scholar 

  6. Egland, P. G., Palmer, R. J. Jr & Kolenbrander, P. E. Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA 101, 16917–16922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M. & Hardie, K. R. Making 'sense' of metabolism: autoinducer-2, luxS and pathogenic bacteria. Nature Rev. Microbiol. 3, 383 (2005).

    Article  CAS  Google Scholar 

  8. Winzer, K. et al. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148, 909–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Spoering, A. L. & Gilmore, M. S. Quorum sensing and DNA release in bacterial biofilms. Curr. Opin. Microbiol. 9, 133–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Lebeer, S. et al. Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. J. Bacteriol. 189, 860–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Shao, H., Lamont, R. J. & Demuth, D. R. Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect. Immun. 75, 4211–4218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krin, E. et al. Pleiotropic role of quorum-sensing autoinducer 2 in Photorhabdus luminescens. Appl. Environ. Microbiol. 72, 6439–6451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wen, Z. T. & Burne, R. A. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68, 1196–1203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Merritt, J., Qi, F., Goodman, S. D., Anderson, M. H. & Shi, W. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71, 1972–1979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wen, Z. T. & Burne, R. A. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186, 2682–2691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshida, A., Ansai, T., Takehara, T. & Kuramitsu, H. K. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71, 2372–2380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balestrino, D., Haagensen, J. A. J., Rich, C. & Forestier, C. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J. Bacteriol. 187, 2870–2880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Keersmaecker, S. C. J. et al. Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium. J. Biol. Chem. 280, 19563–19568 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. van Houdt, R., Moons, P., Jansen, A., Vanoirbeek, K. & Michiels, C. W. Isolation and functional analysis of luxS in Serratia plymuthica RVH1. FEMS Microbiol. Lett. 262, 201–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Li, J. et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J. Bacteriol. 189, 6011–6020 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gonzalez Barrios, A. F. et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188, 305–316 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu, L., Hume, M. E. & Pillai, S. D. Autoinducer-2-like activity on vegetable produce and its potential involvement in bacterial biofilm formation on tomatoes. Foodborne Pathog. Dis. 2, 242–249 (2005).

    Article  PubMed  Google Scholar 

  24. Tannock, G. W. et al. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl. Environ. Microbiol. 71, 8419–8425 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sela, S., Frank, S., Belausov, E. & Pinto, R. A mutation in the luxS gene influences Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 72, 5653–5658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Challan Belval, S. et al. Assessment of the roles of LuxS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 72, 2644–2650 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rickard, A. H. et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60, 1446–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lombardia, E., Rovetto, A. J., Arabolaza, A. L. & Grau, R. R. A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J. Bacteriol. 188, 4442–4452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reeser, R. J., Medler, R. T., Billington, S. J., Jost, B. H. & Joens, L. A. Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl. Environ. Microbiol. 73, 1908–1913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, L. et al. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect. Immun. 74, 488–496 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Auger, S., Krin, E., Aymerich, S. & Gohar, M. Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl. Environ. Microbiol. 72, 937–941 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herzberg, M., Kaye, I. K., Peti, W. & Wood, T. K. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J. Bacteriol. 188, 587–598 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kendall, M. M., Rasko, D. A. & Sperandio, V. Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect. Immun. 75, 4875–4884 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schneider, R., Lockatell, C. V., Johnson, D. & Belas, R. Detection and mutation of a luxS-encoded autoinducer in Proteus mirabilis. Microbiology 148, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, M. Y. et al. Swarming differentiation of Vibrio vulnificus downregulates the expression of the vvhBA hemolysin gene via the LuxS quorum-sensing system. J. Microbiol. 44, 226–232 (2006).

    CAS  PubMed  Google Scholar 

  36. Jeon, B., Itoh, K., Misawa, N. & Ryu, S. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol. Immunol. 47, 833–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Elvers, K. T. & Park, S. F. Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule. Microbiology 148, 1475–1481 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schembri, M. A., Kjaergaard, K. & Klemm, P. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48, 253–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Beloin, C. et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 51, 659–674 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Geier, H., Mostowy, S., Cangelosi, G. A., Behr, M. A. & Ford, T. E. Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl. Environ. Microbiol. 74, 1798–1804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Domka, J., Lee, J. & Wood, T. K. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl. Environ. Microbiol. 72, 2449–2459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernandes, R. et al. Magnetic nanofactories: localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metab. Eng. 9, 228–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. McLean, J. S., Ona, O. N. & Majors, P. D. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy. ISME J. 2, 121–131 (2007).

    Article  PubMed  Google Scholar 

  44. Winzer, K., Hardie, K. R. & Williams, P. Bacterial cell-to-cell communication: sorry, can't talk now — gone to lunch! Curr. Opin. Microbiol. 5, 216 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Xavier, K. B. et al. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol. 2, 128–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J., Bansal, T., Jayaraman, A., Bentley, W. E. & Wood, T. K. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol. 73, 4100–4109 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Azakami, H. et al. Characterization of autoinducer 2 signal in Eikenella corrodens and its role in biofilm formation. J. Biosci. Bioeng. 102, 110–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Cole, S. P., Harwood, J., Lee, R., She, R. & Guiney, D. G. Characterization of monospecies biofilm formation by Helicobacter pylori. J. Bacteriol. 186, 3124–3132 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blehert, D. S., Palmer, R. J. Jr, Xavier, J. B., Almeida, J. S. & Kolenbrander, P. E. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185, 4851–4860 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petersen, F. C., Ahmed, N. A., Naemi, A. & Scheie, A. A. LuxS-mediated signalling in Streptococcus anginosus and its role in biofilm formation. Antonie Van Leeuwenhoek 90, 109–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. McNab, R. et al. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185, 274–284 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beloin, C. et al. The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli. J. Bacteriol. 188, 1316–1331 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Daines, D. A. et al. Haemophilus influenzae luxS mutants form a biofilm and have increased virulence. Microb. Pathog. 39, 87 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Doherty, N., Holden, M. T. G., Qazi, S. N., Williams, P. & Winzer, K. Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J. Bacteriol. 188, 2885–2897 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sperandio, V., Torres, A. G. & Kaper, J. B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43, 809–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Sircili, M. P., Walters, M., Trabulsi, L. R. & Sperandio, V. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect. Immun. 72, 2329–2337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rader, B. A., Campagna, S. R., Semmelhack, M. F., Bassler, B. L. & Guillemin, K. The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori. J. Bacteriol. 189, 6109–6117 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Doherty and N. Halliday for help in the preparation of figure 1 and The Wellcome Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Rachael Hardie.

Related links

Related links

DATABASES

Entrez Genome Project

Actinomyces naeslundii

Aggregatibacter actinomycetemcomitans

Bacillus cereus

Bacillus subtilis

Escherichia coli

Haemophilus influenzae

Klebsiella pneumoniae

Lactobacillus reuteri

Lactobacillus rhamnosus

Listeria monocytogenes

Mycobacterium avium

Pseudomonas aeruginosa

Salmonella enterica serovar Typhimurium

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus mutans UA159

Vibrio harveyi

FURTHER INFORMATION

Kim Rachael Hardie's homepage

Kim Rachael Hardie's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, K., Heurlier, K. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol 6, 635–643 (2008). https://doi.org/10.1038/nrmicro1916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing