Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

H-NS, the genome sentinel

Abstract

Two recent reports have indicated that the H-NS protein in Salmonella enterica serovar Typhimurium has a key role in selectively silencing the transcription of large numbers of horizontally acquired AT-rich genes, including those that make up its major pathogenicity islands. Broadly similar conclusions have emerged from a study of H-NS binding to DNA in Escherichia coli. How do these findings affect our view of H-NS and its ability to influence bacterial evolution?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H-NS as a gene silencer.

Similar content being viewed by others

References

  1. Dorman, C. J. H-NS: a universal regulator for a dynamic genome. Nature Rev. Microbiol. 2, 391–400 (2004).

    Article  CAS  Google Scholar 

  2. Lucchini, S. et al. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2, e81 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Navarre, W. W. et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella enterica Sv. Typhimurium. Science 313, 236–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Oshima, T., Ishikawa, S., Kurokawa, K., Aiba, H. & Ogasawara, N. Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res. 13, 141–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Rimsky, S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr. Opin. Microbiol. 7, 109–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Tendeng, C. & Bertin, P. H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol. 11, 511–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dame, R. T., Wyman, C. & Goosen, N. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 83, 231–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Dame R. T., Wyman, C., Wurm, R., Wagner, R. & Goosen, N. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J. Biol. Chem. 277, 2146–2150 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kozobay-Avraham, L., Hosid, S. & Bolshoy, A. Curvature distribution in prokaryotic genomes. In Silico Biol. 4, 361–375 (2004).

    CAS  PubMed  Google Scholar 

  10. Olivares-Zavaleta, N., Jauregui, R. & Merino, E. Genome analysis of Escherichia coli promoter sequences evidences that DNA static curvature plays a more important role in gene transcription than has previously been anticipated. Genomics 87, 329–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Pedersen, A. G., Jensen, L. J., Brunak, S., Staerfeldt, H. H. & Ussery, D. W. A DNA structural atlas for Escherichia coli. J. Mol. Biol. 299, 907–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Rimsky, S., Zuber, F., Buckle, M. & Buc, H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42, 1311–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Groisman, E. A. & Ochman, H. How Salmonella became a pathogen. Trends Microbiol. 5, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Dorman, C. J. 2004. Virulence gene regulation in Shigella. In Escherichia coli and Salmonella: Cellular and Molecular Biology. (eds Curtiss, R. et al.) EcoSal[online]. (American Society for Microbiology, Washington DC, 2004).

    Google Scholar 

  17. Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nye, M. B., Pfau, J. D., Skorupski, K. & Taylor, R. K. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J. Bacteriol. 182, 4295–4303 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, K. S., Arita, M., Iida, T. & Honda, T. vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio parahaemolyticus TH3996. Infect. Immun. 73, 5754–5761 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dole, S., Nagarajavel, V. & Schnetz, K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol. Microbiol. 52, 589–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gowrishankar, J. & Manna, D. How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? A review and a model. Genetica 97, 363–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Rajkumari, K., Kusano, S., Ishihama, A., Mizuno, T. & Gowrishankar, J. Effects of H-NS and potassium glutamate on σS- and σ70-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J. Bacteriol. 178, 4176–4181 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, C. C. & Wu, H. Y. LeuO protein delimits the transcriptionally active and repressive domains on the bacterial chromosome. J. Biol. Chem. 280, 15111–15121 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Pflum, M. K. H-NS gives invading DNA the silent treatment. Nature Chem. Biol. 2, 400–401 (2006).

    Article  CAS  Google Scholar 

  25. Beloin, C. & Dorman, C. J. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol. Microbiol. 47, 825–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Le Gall, T. et al. Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. Microbiology 151, 951–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Olekhnovich, I. N. & Kadner, R. J. Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J. Mol. Biol. 357, 373–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Babu, M. M., Teichmann, S. A. & Aravind, L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol. 358, 614–633 (2006).

    Article  CAS  Google Scholar 

  29. Akbar, S., Schechter, L. M., Lostroh, C. P. & Lee, C. A. AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium. Mol. Microbiol. 47, 715–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bajaj, V., Lucas, R. L., Hwang, C. & Lee, C. A. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22, 703–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Baxter, M. A., Fahlen, T. F., Wilson, R. L. & Jones, B. D. HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect. Immun. 71, 1295–1305 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30, 175–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Garmendia, J., Beuzon, C. R., Ruiz-Albert, J. & Holden, D. W. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology 149, 2385–2396 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hensel, M. et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30, 163–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Olekhnovich, I. N. & Kadner, R. J. DNA-binding activities of the HilC and HilD virulence regulatory proteins of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 4148–4160 (2001).

    Article  CAS  Google Scholar 

  36. Schechter, L. M. & Lee, C. A. AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol. Microbiol. 40, 1289–1299 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Grob, P. & Guiney, D. G. In vitro binding of the Salmonella dublin virulence plasmid regulatory protein SpvR to the promoter regions of spvA and spvR. J. Bacteriol. 178, 1813–1820 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robbe-Saule, V., Schaeffer, F., Kowarz, L. & Norel, F. Relationships between H-NS, σS, SpvR and growth phase in the control of spvR, the regulatory gene of the Salmonella plasmid virulence operon. Mol. Gen. Genet. 256, 333–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Sheehan, B. J. & Dorman, C. J. In vivo analysis of the interactions of the LysR-like regulator SpvR with the operator sequences of the spvA and spvR virulence genes of Salmonella typhimurium. Mol. Microbiol. 30, 91–105 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. O'Byrne, C. P. & Dorman, C. J. Transcription of the Salmonella typhimurium spv virulence locus is regulated negatively by the nucleoid-associated protein H-NS. FEMS Microbiol. Lett. 121, 99–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Schechter, L. M., Jain, S., Akbar, S. & Lee, C. A. The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect. Immun. 71, 5432–5435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dorman, C. J. & Deighan, P. Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. Dev. 13, 179–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Hillebrand, A., Wurm, R., Menzel, A. & Wagner, R. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol. Chem. 386, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Prosseda, G. et al. The virF promoter in Shigella: more than just a curved DNA stretch. Mol. Microbiol. 51, 523–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Schneider, D. A., Ross, W. & Gourse, R. L. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol. 6, 151–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Kelly, A. et al. A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150, 2037–2053 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Grainger, D. C., Hurd, D., Goldberg, M. D. & Busby, S. J. W. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res. 34, 4642–4652 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shin, M. et al. DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes Dev. 19, 2388–2398 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Free, A. & Dorman, C. J. Coupling of Escherichia coli hns mRNA levels to DNA synthesis by autoregulation: implications for growth phase control. Mol. Microbiol. 18, 101–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Hinton, J. C. D. et al. Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol. Microbiol. 6, 2327–2337 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Schröder, O. & Wagner, R. The bacterial regulatory protein H-NS — a versatile modulator of nucleic acid structures. Biol. Chem. 383, 945–960 (2002).

    Article  PubMed  Google Scholar 

  52. Amit, R., Oppenheim, A. B. & Stavans, J. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys. J. 84, 2467–2473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Augustyn, K. E., Wojtuszewski, K., Hawkins, M. E., Knutson, J. R. & Mukerji, I. Examination of the premelting transition of DNA A-tracts using a fluorescent adenosine analogue. Biochemistry 45, 5039–5047 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ussery, D. W., Higgins, C. F. & Bolshoy, A. Environmental influences on DNA curvature. J. Biomol. Struct. Dyn. 16, 811–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Lucas, R. L. & Lee, C. A. Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 183, 2733–2745 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rhen, M. & Dorman, C. J. Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int. J. Med. Microbiol. 295, 487–502 (2005).

    Article  CAS  Google Scholar 

  57. Dorman, C. J., Hinton, J. C. D. & Free, A. Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol. 7, 124–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Free, A., Porter, M. E., Deighan, P. & Dorman, C. J. Requirement for the molecular adapter function of StpA at the Escherichia coli bgl promoter depends upon the level of truncated H-NS protein. Mol. Microbiol. 42, 903–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Johansson, J., Eriksson, S., Sondén, B., Wai, S. N. & Uhlin, B. E. Heteromeric interactions among nucleoid-associated bacterial proteins: localization of StpA-stabilizing regions in H-NS of Escherichia coli. J. Bacteriol. 183, 2343–2347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams, R. M., Rimsky, S. & Buc, H. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J. Bacteriol. 178, 4335–4343 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, A., Rimsky, S., Reaban, M. E., Buc, H. & Belfort, M. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J. 15, 1340–1349 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muller, C. M. et al. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J. Bacteriol. 188, 5428–5438 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Esposito, D. et al. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J. Mol. Biol. 324, 841–850 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Bloch, V. et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nature Struct. Biol. 10, 212–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Ono, S. et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 391, 203–213 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dame, R. T., Noom, M. C. & Wuite, G. J. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Cheung, K. J., Badarinarayana, V., Selinger, D. W., Janse, D. & Church, G. M. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res. 13, 206–215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lacour, S. & Landini, P. σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J. Bacteriol. 186, 7186–7195 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou, Y. & Gottesman, S. Modes of regulation of RpoS by H-NS. J. Bacteriol. 188, 7022–7025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dame, R. T. et al. DNA bridging: a property shared among H-NS-like proteins. J. Bacteriol. 187, 1845–1848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pingoud, A., Fuxreiter, M., Pingoud, V. & Wende, W. Type II restriction endonucleases: structure and mechanism. Cell. Mol. Life Sci. 62, 685–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Doyle, M. et al. An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science in the press.

  73. Cerdan, R. et al. Crystal structure of the N-terminal dimerization domain of VicH, the H-NS-like protein of Vibrio cholerae. J. Mol. Biol. 334, 179–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Atlung T. & Ingmer, H. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol. 24, 7–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Nye, M. B. & Taylor, R. K. Vibrio cholerae H-NS domain structure and function with respect to transcriptional repression of ToxR regulon genes reveals differences among H-NS family members. Mol. Microbiol. 50, 427–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Stella, S., Falconi, M., Lammi, M., Gualerzi, C. O. & Pon, C. L. Environmental control of the in vivo oligomerization of nucleoid protein H-NS. J. Mol. Biol. 355, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Stella, S., Spurio, R., Falconi, M., Pon, C. L. & Gualerzi, C. O. Nature and mechanism of the in vivo oligomerization of nucleoid protein H-NS. EMBO J. 24, 2896–2905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ueguchi, C., Seto, C., Suzuki, T. & Mizuno, T. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 274, 145–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Owen-Hughes, T. A. et al. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 71, 255–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Dersch, P., Schmidt, K. & Bremer, E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol. Microbiol. 8, 875–889 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Ueguchi, C., Kakeda, M. & Mizuno, T. Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein: H-NS functions as a repressor of its own transcription. Mol. Gen. Genet. 236, 171–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Sondén, B. & Uhlin, B. E. Coordinated and differential expression of histone-like proteins in Escherichia coli: regulation and function of the H-NS analog StpA. EMBO J. 15, 4970–4980 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Free, A. & Dorman, C. J. The Escherichia coli stpA gene is transiently expressed during growth in rich medium and is induced in minimal medium and by stress conditions. J. Bacteriol. 179, 909–918 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deighan, P., Beloin, C. & Dorman, C. J. Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Mol. Microbiol. 48, 1401–1416 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Falconi, M., Higgins, N. P., Spurio, R., Pon, C. L. & Gualerzi, C. O. Expression of the gene encoding the major bacterial nucleotide protein H-NS is subject to transcriptional auto-repression. Mol. Microbiol. 10, 273–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. La Teana, A. et al. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl Acad. Sci. USA 88, 10907–10911 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Lease, R. A. & Belfort, M. Riboregulation by DsrA RNA: trans-actions for global economy. Mol. Microbiol. 38, 667–672 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Niamh Ní Bhriain for insightful comments on the manuscript and I am grateful to Jay Hinton, Ferric Fang, William Navarre and Marie Doyle for helpful discussions. Work in the author's laboratory is supported by grants from the Science Foundation Ireland and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

S. typhimurium

Shigella flexneri

Vibrio cholerae

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorman, C. H-NS, the genome sentinel. Nat Rev Microbiol 5, 157–161 (2007). https://doi.org/10.1038/nrmicro1598

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing