Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p47 GTPases: regulators of immunity to intracellular pathogens

Key Points

  • The 47-kDa GTP-binding proteins constitute a family of structurally related genes that are upregulated by stimulation with type I and type II interferons (IFNs). Most of these molecules seem to have GTPase enzyme activity.

  • Mice that are deficient in two of the p47 GTPase family members, Igtp and Lrg47, have been shown to be acutely susceptible to various infections with intracellular protozoa and bacteria that are normally controlled by IFN-dependent host-resistance mechanisms. By contrast, the same animals are resistant to infection with viruses.

  • Whereas Igtp-deficient mice are highly susceptible to several protozoan pathogens, they are resistant to all bacterial infections that have been tested so far. By contrast, Lrg47-deficient animals fail to control both protozoan and bacterial infections.

  • In the case of Mycobacterium tuberculosis, Lrg47 has been shown to affect intracellular survival of the pathogen by regulating phagosome maturation and acidification.

  • Additional studies indicate that Lrg47 and Igtp can regulate lymphocyte dynamics and therefore influence host resistance by controlling the generation of effector T cells.

Abstract

Activation of the innate immune system by interferon-γ(IFN-γ) is crucial for host resistance to infection. IFN-γ induces the expression of a wide range of mediators that undermine the ability of pathogens to survive in host cells, including a newly discovered family of 47-kDa GTPases. Elimination of different p47 GTPases in mice by gene targeting severely cripples IFN-γ-regulated defence against Toxoplasma gondii, Listeria monocytogenes, Mycobacterium spp. and other pathogens. In this article, we review our understanding of the role of p47 GTPases in resistance to intracellular infection and discuss the present evidence concerning their mode of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected intracellular anti-microbial mediators induced by interferon-γ(IFN-γ).
Figure 2: Dendrogram of the p47 GTPase family.
Figure 3: Mechanisms implicated in p47 GTPase regulation of host resistance to infection.

Similar content being viewed by others

References

  1. Jouanguy, E. et al. A human IFNγR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nature Genet. 21, 370–378 (1999).

    Article  CAS  Google Scholar 

  2. Janssen, R. et al. Divergent role for TNF-α in IFN-γ-induced killing of Toxoplasma gondii and Salmonella typhimurium contributes to selective susceptibility of patients with partial IFN-γ receptor 1 deficiency. J. Immunol. 169, 3900–3907 (2002).

    Article  CAS  Google Scholar 

  3. Ottenhoff, T. H. et al. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nature Genet. 32, 97–105 (2002).

    Article  CAS  Google Scholar 

  4. Scharton-Kersten, T. M. et al. In the absence of endogenous IFN-γ, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J. Immunol. 157, 4045–4054 (1996). This study defines interferon-γ (IFN-γ) as a crucial factor for host resistance to Toxoplasma gondii.

    CAS  PubMed  Google Scholar 

  5. Dalton, D. K. et al. Multiple defects in immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993). References 5 and 6 were the first to describe the marked effects of complete IFN-γ-signalling deficiency caused by gene inactivation on host defence in mice.

    Article  CAS  Google Scholar 

  6. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  CAS  Google Scholar 

  7. Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. Requirement for natural killer cell-produced interferon-γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J. Exp. Med. 182, 1045–1056 (1995).

    Article  CAS  Google Scholar 

  8. Ehrt, S. et al. Reprogramming the macrophage transcriptome in response to interferon-γ and mycobacterium tuberculosis: signaling roles for nitric oxide sythase-2 and phagosome oxidase. J. Exp. Med. 194, 1123–1140 (2001).

    Article  CAS  Google Scholar 

  9. Fruh, K., Karlson, L. & Yang, Y. In γ-Interferon in Antiviral defense (ed. Karupiah, G.) 39 (Springer, Heidelberg, Germany, 1997).

    Google Scholar 

  10. Scharton-Kersten, T. M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J. Exp. Med. 185, 1261–1273 (1997).

    Article  CAS  Google Scholar 

  11. MacMicking, J. D. et al. Identification of nitric oxide as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  Google Scholar 

  12. Hackam, D. J. et al. Host resistance to intracellular infection: mutation of the natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 188, 351–364 (1998).

    Article  CAS  Google Scholar 

  13. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: identification of a candidate gene for Bcg. Cell 73, 469–485 (1993).

    Article  CAS  Google Scholar 

  14. Govoni, G. et al. Genomic structure, promoter sequence, and induction of expression of the mouse Nramp1 gene in macrophages. Genomics 27, 9–19 (1995).

    Article  CAS  Google Scholar 

  15. Vasquez-Torres, A. & Fang, F. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9, 29–33 (2001).

    Article  Google Scholar 

  16. Cassatella, M. A. et al. Molecular basis of interferon-γ and lipopolysaccharide enhancement of phagocyte respiratory burst capability. J. Biol. Chem. 265, 20241–20246 (1990).

    CAS  PubMed  Google Scholar 

  17. Saito, K., Markey, S. P. & Heyes, M. P. Chronic effects of γ-interferon on quinolic acid and indoleamine-2,3-dioxygenase in brain of C57Bl/6 mice. Brain Res. 546, 151–154 (1991).

    Article  CAS  Google Scholar 

  18. Murray, H. W. et al. Role of tryptophan degradation in respiratory burst-independent antimicrobial activity of γ-interferon-stimulated human macrophages. Infect. Immun. 57, 845–849 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, Y. S., Colonno, R. J. & Yin, F. H. Interferon induction of fibroblast proteins with guanylate binding activity. J. Biol. Chem. 258, 7746–7750 (1983).

    CAS  PubMed  Google Scholar 

  20. Cheng, Y. S., Patterson, C. E. & Staeheli, P. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP. Mol. Cell. Biol. 11, 4717–4725 (1991).

    Article  CAS  Google Scholar 

  21. Boehm, U. et al. Two families of GTPases dominate the cellular response to IFN-γ. J. Immunol. 161, 6715–6723 (1998). This paper describes the cloning of two p47 GTPases, Iigp and Gtpi, and compares the p47 GTPase family to the guanylate-binding protein (GBP) family.

    CAS  PubMed  Google Scholar 

  22. Praefcke, G. J., Geyer, M., Schwemmle, M., Kalibitzer, H. R. & Herrmann, C. Nucleotide-binding characteristics of human guanylate binding protein 1 (GBP1) and identification of the third GTP-binding motif. J. Mol. Biol. 292, 321–332 (1999).

    Article  CAS  Google Scholar 

  23. Nguyen, T. T., Hu, Y., Widney, D. P., Mar, R. A. & Smith, J. B. Murine GBP-5, a new member of the murine guanylate-binding protein family, is coordinately regulated with other GBPs in vivo and in vitro. J. Int. Cyt. Res. 22, 899–909 (2002).

    Article  CAS  Google Scholar 

  24. Neun, R., Richter, M. F., Staeheli, P. & Scwemmle, M. GTPase properties of the interferon-induced human guanylate-binding protein 2. FEBS Lett. 390, 69–72 (1996).

    Article  CAS  Google Scholar 

  25. Scwemmle, M. & Staeheli, P. The interferon-induced 67 kDa guanylate binding protein (hGBP-1) is a GTPase that converts GTP to GMP. J. Biol. Chem. 269, 11299–11305 (1994).

    Google Scholar 

  26. Anderson, S. L., Carton, J. M., Xing, L. & Rubin, B. Y. Interferon-induced guanylate-binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encophalomyocarditis virus. Virology 256, 8–14 (1999).

    Article  CAS  Google Scholar 

  27. Gorbacheva, V. Y., Lindner, D., Sen, G. C. & Vestal, D. J. The interferon (IFN)-induced GTPase, mGBP-2. J. Biol. Chem. 277, 6080–6087 (2002).

    Article  CAS  Google Scholar 

  28. Prakash, B., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of the human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000).

    Article  CAS  Google Scholar 

  29. Staeheli, P. & Haller, O. Interferon-induced Mx protein: a mediator of cellular resistance to influenza virus. Interferon 8, 1–23 (1987).

    CAS  PubMed  Google Scholar 

  30. Accola, M. A., Huang, B., Masri, A. A. & McNiven, M. A. The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J. Biol. Chem. 277, 21829–21835 (2002).

    Article  CAS  Google Scholar 

  31. Melen, K. et al. Human MxB protein, an interferon-γ-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope. J. Biol. Chem. 271, 23478–23486 (1996).

    Article  CAS  Google Scholar 

  32. Haller, O., Frese, M. & Kochs, G. Mx proteins: mediators of innate resistance to RNA viruses. Rev. Sci. Tech. 17, 220–230 (1998).

    Article  CAS  Google Scholar 

  33. Landis, H. et al. Human MxA protein confers resistance to Semliki forest virus and inhibits the amplification of a Semliki forest virus-based replicon in the absence of viral structural proteins. J. Virol. 72, 1516–1522 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chieux, V. et al. Inhibition of coxsackievirus B4 replication in stably transfected cells expressing human MxA protein. Virology 283, 84–92 (2001).

    Article  CAS  Google Scholar 

  35. Hefti, H. P. et al. Human MxA protein protects mice lacking functional α/β interferon system against La Crosse virus and other lethal virus infections. J. Virol. 73, 6984–6991 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinshaw. J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    Article  CAS  Google Scholar 

  37. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  Google Scholar 

  38. Stowell, M. H. B., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

    Article  CAS  Google Scholar 

  39. Haller, O. & Kochs, G. Interferon-induced Mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3, 710–717 (2002).

    Article  CAS  Google Scholar 

  40. Taylor, G. A. et al. Identification of a novel GTPase, the inducibly expressed GTPase (IGTP), that accumulates in response to interferon-γ. J. Biol. Chem. 271, 20399–20405 (1996).

    Article  CAS  Google Scholar 

  41. Taylor, G. A. et al. The inducibly expressed GTPase (IGTP) localizes to the endoplasmic reticulum independently of GTP binding. J. Biol. Chem. 272, 10639–10645 (1997).

    Article  CAS  Google Scholar 

  42. Sorace, J. M., Johnson, R. J., Howard, D. L. & Drysdale, B. E. Identification of an endotoxin and IFN-γ-inducible cDNA: possible identification of a novel protein family. J. Leukoc. Biol. 58, 477–484 (1995).

    Article  CAS  Google Scholar 

  43. Gilly, M. & Wall, R. The IRG-47 gene is IFN-γ induced in B cells and encodes a protein with GTP-binding motifs. J. Immunol. 148, 3275–3281 (1992).

    CAS  PubMed  Google Scholar 

  44. Carlow, D. A., Marth, J., Clark-Lewis, I. & Teh, H. -S. Isolation of a gene encoding a developmentally regulated T cell-specific protein with a guanidine nucleotide triphosphate binding motif. J. Immunol. 154, 1724–1734 (1995).

    CAS  PubMed  Google Scholar 

  45. LaFuse, W. P., Brown, D., Castle, L. & Zwilling, B. S. Cloning and characterization of novel cDNA that is IFN-γ-induced in mouse peritoneal macrophages and encodes a GTP-binding protein. J. Leukoc. Biol. 57, 477–483 (1995).

    Article  CAS  Google Scholar 

  46. Carlow, D. A., The, S. -J. & Teh, H. Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases. J. Immunol. 161, 2348–2355 (1998).

    CAS  PubMed  Google Scholar 

  47. Collazo, C. M. et al. The function of γ-interferon-inducible GTP-binding protein IGTP in host resistance to Toxoplasma gondii is Stat1 dependent and requires expression in both hematopoietic and nonhematopoietic cellular compartments. Infect. Immun. 70, 6933–6939 (2002).

    Article  CAS  Google Scholar 

  48. Zerrahn, J., Schaible, U. E., Brinkmann, V., Guhlich, U. & Kaufmann, S. H. E. The IFN-inducible golgi- and endoplasmic reticulum associated 47-kDa GTPase IIGP is transiently expressed during listeriosis. J. Immunol. 168, 3428–3436 (2002).

    Article  CAS  Google Scholar 

  49. Taylor, G. A. et al. Pathogen specific loss of host resistance in mice lacking the interferon-γ-inducible gene IGTP. Proc. Natl Acad. Sci. USA 97, 751–755 (2000). The first study that describes genetic targeting of a p47 GTPase and its effects on host resistance.

    Article  CAS  Google Scholar 

  50. Carlow, D. A., Teh, S. J. & Teh, H. S. Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases. J. Immunol. 161, 2348–2355 (1998).

    CAS  PubMed  Google Scholar 

  51. Ulthaiah, R. C., Praefcke, G. J. K., Howard, J. C. & Herrmann, C. IIGP1, an interferon-γ inducible 47 kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent multimerization. J. Biol. Chem. 278, 29336–29343 (2003). A thorough biochemical study of the GTP-binding properties of the p47 GTPase, Iigp, and the first study to indicate that the p47 GTPases might function through oligomerization.

    Article  Google Scholar 

  52. Sibley, L. D. Interactions between Toxoplasma gondii and its mammalian host cells. Semin. Cell Biol. 4, 335–344 (1993).

    Article  CAS  Google Scholar 

  53. Sibley, L. D., Weidner, E. & Krahenbuhl, J. L. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 315, 416–419 (1985).

    Article  CAS  Google Scholar 

  54. Jones, T. C. & Hirsch, J. G. The interaction between Toxoplasma gondii and mammalian cells. J. Exp. Med. 136, 1173–1193 (1972).

    Article  CAS  Google Scholar 

  55. Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon-γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med. 194, 181–187 (2001). This paper shows gene-specific and pathogen-specific roles in host resistance for the p47 GTPases.

    Article  CAS  Google Scholar 

  56. Halonen, S. K., Taylor, G. A. & Weiss, L. M. γ-interferon-induced inhibition of Toxoplasma gondii in astrocytes in mediated by IGTP. Infect. Immun. 69, 5573–5576 (2001).

    Article  CAS  Google Scholar 

  57. Andrews, N. W. Living dangerously: how Trypanosoma cruzi uses lysosomes to get inside host cells, and then escapes into the cytoplasm. Biol. Res. 26, 65–67 (1993).

    CAS  PubMed  Google Scholar 

  58. Sacks, D. & Sher, A. Evasion of innate immunity by parasitic protozoa. Nature Immunol. 3, 1041–1047 (2002).

    Article  CAS  Google Scholar 

  59. De Souza, A. P. et al. Absence of interferon-γ inducible gene IGTP does not significantly alter the development of chagasic cardiomyopathy in mice infected with Trypanosoma cruzi (Brazil Strain). J. Parasitol. (in the press).

  60. Cossart, P. & Lecuit, M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17, 3797–3806 (1998).

    Article  CAS  Google Scholar 

  61. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite Listeria monocytogenes. J. Cell. Biol. 109, 1597–1608 (1989).

    Article  CAS  Google Scholar 

  62. MacMicking, J., Taylor, G. A. & McKinney, J. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003). The authors found that the p47 GTPase, Lrg47, is central in the resistance to Mycobacterium tuberculosis by promoting the maturation of the bacterial phagosome in macrophages.

    Article  CAS  Google Scholar 

  63. Feng, C. G. et al. Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J. Immunol. 172, 1163–1168 (2004). This report discusses marked effects of Lrg47 deficiency on the T-cell compartment during infection with Mycobacterium avium.

    Article  CAS  Google Scholar 

  64. Gomes, M. S., Florido, M., Pais, T. F. & Appelberg, R. Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. J. Immunol. 162, 6734–6739 (1999).

    CAS  PubMed  Google Scholar 

  65. Doherty, T. M. & Sher, A. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium. J. Immunol. 158, 4822–4831 (1997).

    CAS  PubMed  Google Scholar 

  66. Zhang, H. M. et al. Overexpression of interferon-γ-inducible GTPase inhibits coxsackievirus B3-induced apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway and inhibition of viral replication. J. Biol. Chem. 278, 33011–33019 (2003).

    Article  CAS  Google Scholar 

  67. Reddehase, M. J., Mutter, W., Munch, K., Buhring, H. J. & Koszinowski, U. H. CD8+ T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J. Virol. 61, 3102–3108 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jonjic, S., Mutter, W., Weiland, F., Reddehase, M. J. & Koszinowski, U. H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J. Exp. Med. 169, 1199–1212 (1989).

    Article  CAS  Google Scholar 

  69. Heise, M. T. & Virgin, H. W. The T cell independent role of IFN-γ and TNF-α in macrophage activation during murine cytomegalovirus and herpes simplex virus infection. J. Virol. 69, 904–909 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hengel, H., Lucin, P., Jonjic, S., Ruppert, T. & Koszinowski, U. H. Restoration of cytomegalovirus antigen presentation by γ-interferon combats viral escape. J. Virol. 68, 289–297 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Meresse, S., Steele-Mortimer, O., Finlay, B. B. & Gorvel, J. -P. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles. EMBO J. 18, 4394–4403 (1999).

    Article  CAS  Google Scholar 

  72. Alvarez-Dominguez, C., Barbier, A. M., Beron, W., Wandinger-Ness, A. & Stahl, P. D. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J. Biol. Chem. 271, 13834–13843 (1996).

    Article  CAS  Google Scholar 

  73. Scianimanico, S. et al. Impaired recruitment of the small GTPase rab 7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastogotes. Cell. Microbiol. 1, 19–32 (1999).

    Article  CAS  Google Scholar 

  74. Alvarez-Dominguez, C. & Stahl, P. D. Inteferon-γ selectively induced rab5a synthesis and processing in mononuclear cells. J. Biol. Chem. 273, 33901–33904 (1998).

    Article  CAS  Google Scholar 

  75. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002). The authors describe the contribution of the endoplasmic reticulum to the phagosome during its formation.

    Article  CAS  Google Scholar 

  76. Nuoffer, C. & Balch, W. E. GTPases: multifunctional molecular switches regulating vesicular trafficking. Annu. Rev. Biochem. 63, 949–990 (1994).

    Article  CAS  Google Scholar 

  77. Gibbs, J. B., Marshall, M. S., Scolnick, E. M., Dixon, R. A. F. & Vogel, U. S. Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and GTPase activating protein (GAP). J. Biol. Chem. 265, 20437–20442 (1990).

    CAS  PubMed  Google Scholar 

  78. Dever, T. E., Glynias, J. & Merrick, W. C. GTP-binding domain: three consensus sequence elements with distinct spacing. Proc. Natl Acad. Sci. USA 84, 1814–1818 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Belkaid, G. Yap, J. MacMicking, J. McKinney, D. Sacks, H. Young and C. Collazo for helpful discussions and intellectual contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CD4

CD8

Gbp1

GBP1

Gbp2

GBP2

Gbp3

Gbp4

Gbp5

GM-CSF

gp91-phox

Gtpi

IDO

IFN-α

IFN-β

IFN-γ

Igtp

Iigp

IL-1α

IL-1β

IL-2

IL-6

IRF1

Lrg47

Mx1

Mx2

MxA

MxB

NOS2

NRAMP1

RAB5A

RAB5B

RAB5C

RAB7

Stat1

Tgtp

TNF

FURTHER INFORMATION

Alan Sher's laboratory

Glossary

NITRIC OXIDE SYNTHASE 2

(NOS2). The inducible form of nitric oxide synthase — an important enzyme in the production of nitric oxide — which is produced in response to lipopolysaccharide and interferon-γ by macrophages and other cells. NOS2 has a crucial role in host resistance to infection.

ISOPRENYLATED PROTEINS

Proteins that are post-translationally modified by the covalent addition of an isoprenoid lipid moiety (either a farnesyl or geranylgeranyl group) to a cysteine near the carboxyl terminus of the protein, usually in a Cys-Ala-Ala-Xaa motif. This modification often allows association of the protein with a lipid membrane in the cell.

OLIGOMERIZATION

The association of polypeptide monomers to form a multi-subunit protein.

GENE KNOCKOUT

A technique, also referred to as gene targeting, by which a specific gene is inactivated, usually through the disruption, mutation or removal of a portion of the protein-coding segments of the gene.

PARASITOPHOROUS VACUOLE

An intracellular, membrane-bound vacuole that contains a parasite that has infected a host cell. The vacuole is initially formed from host-cell lipid and protein components, but, subsequently, the character of the vacuole is greatly influenced by the parasite that it contains.

BONE-MARROW CHIMAERAS

Animals in which the endogenous immune system has been inactivated and replaced with the immune system from an allogeneic donor. To accomplish this, the haematopoietic cells of the recipient are lethally irradiated, after which the immune system is reconstituted by intravenous injection of bone-marrow cells from the donor.

PARTIAL CHEMOTHERAPY

The use of antimicrobial agents to allow an otherwise susceptible host to survive through a particular period of infection.

LYSOSOMES

Membrane-bound organelles in the cytoplasm of cells that contain a high concentration of hydrolytic enzymes that are responsible for the degradation of macromolecules. The contents of lysosomes are acidic due to the actions of a vacuolar ATPase.

T HELPER 1/2 (TH1/2) CELLS

Two subsets of T helper cells that are defined by the different spectra of cytokines that they secrete, and, consequently, the different biological functions that they carry out. TH1 cells secrete interferon-γ and are involved in cell-mediated functions such as macrophage activation, whereas TH2 cells function as helpers for B-cell activation and antibody production.

GRANULOMA

A mass of inflammatory cells that arises due to the persistence of an antigen or infectious agent in host tissue. The granuloma contains various cells, including lymphocytes, macrophages, giant cells and fibroblasts.

ENDOSOMES

Membrane-bound vesicles in the cytoplasm of cells that are formed by the fusion of small endocytic vesicles that result from endocytosis. A network of endosomes extends from the plasma membrane of the cell to the perinuclear region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, G., Feng, C. & Sher, A. p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 4, 100–109 (2004). https://doi.org/10.1038/nri1270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing