Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating antigen-receptor gene assembly

Key Points

  • V(D)J recombination depends on the lymphoid-specific recombinase-activating gene 1 (RAG1) and RAG2 proteins, which recognize conserved recombination signal sequences (RSSs) that flank all rearranging gene segments and introduce double-stranded DNA (dsDNA) breaks. Proteins of the dsDNA-break-repair machinery expressed by all cells then collaborate with the RAG proteins to form recombinant molecules that encode the variable exons of immunoglobulin and T-cell receptor (TCR) genes.

  • V(D)J recombination is regulated in three ways — lineage specificity (immunoglobulin genes rearrange fully in B cells and TCR genes rearrange in T cells), order (immunoglobulin heavy chain rearranges before immunoglobulin light chain, TCRβ rearranges before TCRα), and allelic exclusion (an individual B or T cell expresses only one functional rearrangement at each receptor locus).

  • The RAG1 and RAG2 are physically linked in the genome and are convergently transcribed. Various unusual structural features of the RAG locus have led to the suggestion that the V(D)J recombinase evolved from a primitive transposable element system.

  • RAG1 and RAG2 transcription are coordinately regulated by multiple conserved, lineage-specific cis-acting DNA sequences located 5′ of RAG2. Cell-cycle-associated protein degradation also has an important role in regulating recombinase activity.

  • As all V(D)J recombination events involve a common recombinase (RAG and DNA-break-repair proteins) that recognize conserved RSSs, it was proposed that the regulation of recombination depends on aspects of chromatin structure that determine the accessibility of individual RSSs in vivo. Both in vivo and in vitro, observations strongly support what has become known as the 'accessibility hypothesis'.

  • Unrearranged gene segments are transcribed before or coincident with their activation for rearrangement. The transcriptional enhancers and promoters that regulate these germline transcripts are crucial for establishing chromatin structures that are permissive for V(D)J recombination.

  • Assembly of immunoglobulin and TCR loci into chromatin containing various post-translational histone modifications correlates with active or inactive V(D)J recombination.

  • Allelic exclusion requires two types of mechanism; one that prevents the near-simultaneous rearrangement of allelic loci and another that involves feedback regulation by the product of a successfully rearranged allele.

Abstract

The genes encoding antigen receptors are unique because of their high diversity and their assembly in developing lymphocytes from gene segments through a series of site-specific DNA recombination reactions known as V(D)J rearrangement. This review focuses on our understanding of how recombination of immunoglobulin and T-cell receptor gene segments is tightly regulated despite being catalysed by a common lymphoid recombinase, which recognizes a widely distributed conserved recombination signal sequence. Probable mechanisms involve precise expression of the lymphoid-restricted recombination-activating genes RAG1 and RAG2, and developmentally regulated epigenetic alterations in template accessibility, which are targeted by transcriptional regulatory elements and involve chromatin-modifying enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram of the mouse immunoglobulin heavy-chain (IgH) locus showing the positions of the VH, DH and JH gene segments and the IgH intronic enhancer.
Figure 2: Regulation of V(D)J recombinase activity during lymphocyte development.
Figure 3: The recombinase-activating gene locus.
Figure 4: A model for the mechanisms of allelic exclusion of immunoglobulin gene expression.

Similar content being viewed by others

References

  1. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Schatz, D. G., Oettinger, M. A. & Schlissel, M. S. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 10, 359–383 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Hesse, J. E., Lieber, M. R., Mizuuchi, K. & Gellert, M. V(D)J recombination: a functional definition of the joining signals. Genes Dev. 3, 1053–1061 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Fugmann, S. D., Lee, A. I., Shockett, P. E., Villey, I. J. & Schatz, D. G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Pernis, B. G., Chiappino, G., Kelus, A. S. & Gell, P. G. H. Cellular localization of immunoglobulins with different allotype specificities in rabbit lymphoid tissue. J. Exp. Med. 122, 853–875 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taccioli, G. E. et al. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260, 207–210 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Sleckman, B. P., Gorman, J. R. & Alt, F. W. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu. Rev. Immunol. 14, 459–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Yancopoulos, G. & Alt, F. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Schlissel, M. & Baltimore, D. Activation of immunoglobulin κ gene rearrangement correlates with induction of germline κ gene transcription. Cell 58, 1001–1007 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. & Kincade, P. W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, A., Held, W. & MacDonald, H. R. Two waves of recombinase gene expression in developing thymocytes. J. Exp. Med. 179, 1355–1360 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Grawunder, U. et al. Downregulation of RAG1 and RAG2 gene expression in pre-B cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995). This paper describes in detail the pattern of expression of recombination-activating gene (RAG) messenger RNA and protein in primary developing B cells.

    Article  CAS  PubMed  Google Scholar 

  13. Muljo, S. A. & Schlissel, M. S. Pre-B and pre-T-cell receptors: conservation of strategies in regulating early lymphocyte development. Immunol. Rev. 175, 80–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Brandle, D., Muller, C., Rulicke, T., Hengartner, H. & Pircher, H. Engagement of the T-cell receptor during positive selection in the thymus downregulates RAG-1 expression. Proc. Natl Acad. Sci. USA 89, 9529–9533 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tiegs, S. S., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Turka, L. A. et al. Thymocyte expression of RAG-1 and RAG-2: termination by T cell receptor crosslinking. Science 253, 778–781 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Qin, X. F. et al. Secondary V(D)J recombination in B-1 cells. Nature 397, 355–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Hikida, M. et al. Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B cells. Science 274, 2092–2094 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Han, S. et al. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science 278, 301–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Monroe, R. J. et al. RAG2:GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11, 201–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kuwata, N., Igarashi, H., Ohmura, T., Aizawa, S. & Sakaguchi, N. Cutting edge: absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J. Immunol. 163, 6355–6359 (1999).

    CAS  PubMed  Google Scholar 

  23. McMahan, C. J. & Fink, P. J. RAG reexpression and DNA recombination at T cell receptor loci in peripheral CD4+ T cells. Immunity 9, 637–647 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, W. C. & Desiderio, S. Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc. Natl Acad. Sci. USA 91, 2733–2737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grawunder, U., Schatz, D. G., Leu, T. M., Rolink, A. & Melchers, F. The half-life of RAG-1 protein in precursor B cells is increased in the absence of RAG-2 expression. J. Exp. Med. 183, 1731–1737 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J. & Desiderio, S. Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 11, 771–781 (1999). These authors describe the mechanism by which recombinase activity is limited to cells in the G1 stage of the cell cycle. A cyclin-dependent kinase (CDK) phosphorylates Thr490 in RAG2 resulting in its ubiquitin-dependent degradation.

    Article  CAS  PubMed  Google Scholar 

  27. Wayne, J. et al. A regulatory role for recombinase activating genes, RAG-1 and RAG-2, in T cell development. Immunity 1, 95–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Zarrin, A. A., Fong, I., Malkin, L., Marsden, P. A. & Berinstein, N. L. Cloning and characterization of the human recombination activating gene 1 (RAG1) and RAG2 promoter regions. J. Immunol. 159, 4382–4394 (1997).

    CAS  PubMed  Google Scholar 

  30. Kurioka, H. et al. Isolation and characterization of a TATA-less promoter for the human RAG-1 gene. Mol. Immunol. 33, 1059–1066 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Fuller, K. & Storb, U. Identification and characterization of the murine Rag1 promoter. Mol. Immunol. 34, 939–954 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Lauring, J. & Schlissel, M. S. Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol. Cell. Biol. 19, 2601–2612 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kishi, H. et al. Cooperative binding of c-Myb and Pax-5 activates the RAG-2 promoter in immature B cells. Blood 99, 576–583 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Jin, Z. X. et al. Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells. J. Immunol. 169, 3783–3792 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kishi, H. et al. Lineage-specific regulation of the murine RAG-2 promoter: GATA-3 in T cells and Pax-5 in B cells. Blood 95, 3845–3852 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Fong, I. C., Zarrin, A. A., Wu, G. E. & Berinstein, N. L. Functional analysis of the human RAG 2 promoter. Mol. Immunol. 37, 391–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Brown, S. T. et al. Regulation of the RAG-1 promoter by the NF-Y transcription factor. J. Immunol. 158, 5071–5074 (1997).

    CAS  PubMed  Google Scholar 

  38. Wang, Q. F., Lauring, J. & Schlissel, M. S. c-Myb binds to a sequence in the proximal region of the RAG-2 promoter and is essential for promoter activity in T-lineage cells. Mol. Cell. Biol. 20, 9203–9211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, W. et al. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG2. Science 285, 1080–1084 (1999). Using a RAG locus bacterial artificial chromosome (BAC) transgenic reporter construct, these authors show that sequences required for developmentally regulated transcription of RAG reside 5′ of RAG2 and that different sequences are important for expression at distinct stages of B- and T-cell development.

    Article  CAS  PubMed  Google Scholar 

  40. Monroe, R. J., Chen, F., Ferrini, R., Davidson, L. & Alt, F. W. RAG2 is regulated differentially in B and T cells by elements 5′ of the promoter. Proc. Natl Acad. Sci. USA 96, 12713–12718 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei, X. C. et al. Characterization of chromatin structure and enhancer elements for murine recombination activating gene-2. J. Immunol. 169, 873–881 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hsu, L. -Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003). This paper describes the discovery and analysis by targeted deletion of a new RAG locus transcriptional enhancer. Deletion of this element affects B- but not T-cell development.

    Article  CAS  PubMed  Google Scholar 

  43. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Loots, G. G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990). A classic paper reporting the cloning of RAG2 and its synergy in V(D)J recombination with RAG1 . The unusual structure of the RAG locus is also shown.

    Article  CAS  PubMed  Google Scholar 

  46. Romanow, W. J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000). Stable expression of either E2A or EBF (lymphoid-lineage transcription factors) in non-lymphoid cells is sufficient to allow transfected RAG expression vectors to activate rearrangement of endogenous immunoglobulin genes.

    Article  CAS  PubMed  Google Scholar 

  47. Stanhope-Baker, P., Hudson, K., Shaffer, A., Constantinescu, A. & Schlissel, M. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996). These investigators used purified nuclear substrates and recombinant RAG proteins to directly show developmentally regulated changes in recombination signal sequence (RSS) accessibility within chromatin.

    Article  CAS  PubMed  Google Scholar 

  48. Schlissel, M. S. & Stanhope-Baker, P. Accessibility and the developmental regulation of V(D)J recombination. Semin. Immunol. 9, 161 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Inlay, M., Alt, F. W., Baltimore, D. & Xu, Y. Essential roles of the κ light chain intronic enhancer and 3′ enhancer in κ rearrangement and demethylation. Nature Immunol. 3, 463–468 (2002).

    Article  CAS  Google Scholar 

  50. Whitehurst, C. E., Schlissel, M. S. & Chen, J. Deletion of germline promoter PDβ1 from the TCRβ locus causes hypermethylation that impairs dβ1 recombination by multiple mechanisms. Immunity 13, 703–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Mauvieux, L., Villey, I. & de Villartay, J. P. T early α (TEA) regulates initial TCRVAJA rearrangements and leads to TCRJA coincidence. Eur. J. Immunol. 31, 2080–2086 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Villey, I., Caillol, D., Selz, F., Ferrier, P. & de Villartay, J. P. Defect in rearrangement of the most 5′ TCR-J α following targeted deletion of T early α (TEA): implications for TCRα locus accessibility. Immunity 5, 331–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, J. et al. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nature Immunol. 3, 469–476 (2002).

    Article  CAS  Google Scholar 

  54. Hernandez-Munain, C., Sleckman, B. P. & Krangel, M. S. A developmental switch from TCR delta enhancer to TCRα enhancer function during thymocyte maturation. Immunity 10, 723–733 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Shaffer, A. L., Peng, A. & Schlissel, M. S. In vivo occupancy of the κ light chain enhancers in primary pro- and pre-B cells: a model for κ locus activation. Immunity 6, 131–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Shaw, A. C., Swat, W., Davidson, L. & Alt, F. W. Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc. Natl Acad. Sci. USA 96, 2239–2243 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iritani, B. M., Forbush, K. A., Farrar, M. A. & Perlmutter, R. M. Control of B cell development by Ras-mediated activation of Raf. EMBO J. 16, 7019–7031 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dinkel, A. et al. The transcription factor early growth response 1 (Egr-1) advances differentiation of pre-B and immature B cells. J. Exp. Med. 188, 2215–2224 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ye, S. K. et al. Differential roles of cytokine receptors in the development of epidermal γδ T cells. J. Immunol. 167, 1929–1934 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Ye, S. K. et al. Induction of germline transcription in the TCRγ locus by Stat5: implications for accessibility control by the IL-7 receptor. Immunity 11, 213–223 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 Suppl, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998). The authors found that DNA in the Igκ locus was CpG methylated in non-lymphoid and pro-B cells, but underwent progressive, monoallelic demethylation with the progression of B-cell development. They proposed that methylation was important for allelic exclusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldmit, M., Schlissel, M., Cedar, H. & Bergman, Y. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J. 21, 5255–5261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Villey, I., Quartier, P., Selz, F. & de Villartay, J. P. Germ-line transcription and methylation status of the TCR-Jα locus in its accessible configuration. Eur. J. Immunol. 27, 1619–1625 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Golding, A., Chandler, S., Ballestar, E., Wolffe, A. P. & Schlissel, M. S. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J. 18, 3712–3723 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwon, J., Imbalzano, A. N., Matthews, A. & Oettinger, M. A. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. McBlane, F. & Boyes, J. Stimulation of V(D)J recombination by histone acetylation. Curr. Biol. 10, 483–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Kwon, J., Morshead, K. B., Guyon, J. R., Kingston, R. E. & Oettinger, M. A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. McMurry, M. T. & Krangel, M. S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000). Using a chromatin immunoprecipitation assay, the authors uncovered developmentally regulated changes in the post-translational modification of histones, which correlate with RSS accessibility.

    Article  CAS  PubMed  Google Scholar 

  73. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mathieu, N., Hempel, W. M., Spicuglia, S., Verthuy, C. & Ferrier, P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: implications for the control of TCR-β locus recombination. J. Exp. Med. 192, 625–636 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Su, I. H. et al. Ezh2 controls B cell development through histone H3 methylation and IgH rearrangement. Nature Immunol. 4, 124–131 (2003).

    Article  CAS  Google Scholar 

  76. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Fernex, C., Capone, M. & Ferrier, P. The V(D)J recombinational and transcriptional activities of the immunoglobulin heavy-chain intronic enhancer can be mediated through distinct protein-binding sites in a transgenic substrate. Mol. Cell. Biol. 15, 3217–3226 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sikes, M. L., Meade, A., Tripathi, R., Krangel, M. S. & Oltz, E. M. Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc. Natl Acad. Sci. USA 99, 12309–12314 (2002). Using a stably transfected recombination reporter construct, this study explored the roles of promoter sequences and germline transcripts in V(D)J recombination. They found that the position of the promoter was more important than its orientation, and that histone acetylation was not sufficient for recombinase accessibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hesslein, D. G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunol. 2, 848–854 (2001).

    Article  CAS  Google Scholar 

  81. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. ten Boekel, E., Melchers, F. & Rolink, A. G. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8, 199–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Sonoda, E. et al. B cell development under the condition of allelic inclusion. Immunity 6, 225–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Coleclough, C., Perry, R. P., Karjalainen, K. & Weigert, M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290, 372–378 (1981).

    Article  CAS  PubMed  Google Scholar 

  85. Liang, H. E. et al. The 'dispensable' portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17, 639–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Walters, M. C. et al. Enhancers increase the probability but not the level of gene expression. Proc. Natl Acad. Sci. USA 92, 7125–7129 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh, N., Bergman, Y., Cedar, H. & Chess, A. Biallelic germline transcription at the κ immunoglobulin locus. J. Exp. Med. 197, 743–750 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2. 8 A resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  90. Feeney, A. J. Factors that influence formation of B cell repertoire. Immunol. Res. 21, 195–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Ramsden, D. A. & Wu, G. E. Mouse κ light-chain recombination signal sequences mediate recombination more frequently than do those of λ light chain. Proc. Natl Acad. Sci. USA 88, 10721–10725 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bassing, C. H. et al. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405, 583–586 (2000). These investigators used a gene-targeting strategy to show the roles of particular RSSs in regulating rearrangement in the T-cell receptor β (TCRβ) locus. Before this study, it was thought that RSS involvement in recombinase regulation was limited to the restrictions in pairing imposed by the 12/23 rule.

    Article  CAS  PubMed  Google Scholar 

  93. Sleckman, B. P. et al. Mechanisms that direct ordered assembly of T cell receptor β locus V, D, and J gene segments. Proc. Natl Acad. Sci. USA 97, 7975–7980 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pan, P. Y., Lieber, M. R. & Teale, J. M. The role of recombination signal sequences in the preferential joining by deletion in DH-JH recombination and in the ordered rearrangement of the IgH locus. Int. Immunol. 9, 515–522 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Cowell, L. G., Davila, M., Yang, K., Kepler, T. B. & Kelsoe, G. Prospective estimation of recombination signal efficiency and identification of functional cryptic signals in the genome by statistical modeling. J. Exp. Med. 197, 207–220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge my students and fellows, past and present, who have contributed to advancing our knowledge of V(D)J recombination. Work in my lab is funded by the National Institutes of Health and the Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

C/EBP

EBF

EZH2

GATA3

IL-7R

LEF1

LYF1

MYB

NF-Y

PAX5

RAG1

RAG2

RUNX1

SP1

STAT5

Further information

Mark Schlissel's laboratory

Glossary

RECOMBINATION SIGNAL SEQUENCES

(RSSs). Short, conserved DNA sequences that flank all rearranging gene segments and serve as the recognition elements for the recombinase machinery.

POSITIVE SELECTION

Developing T cells are selected for survival and developmental progression based on the avidity of interaction between their T-cell receptors and the ligands expressed by the thymic microenvironment.

FOOTPRINTING ASSAYS

Assays that precisely map DNA–protein interactions by taking advantage of the fact that DNA sequences that are specifically complexed with protein are differentially susceptible to cleavage by nucleases or chemical modifying agents.

DNASE HYPERSENSITIVITY

A technique that allows the location of sites of gene-regulatory sequences because of their increased susceptibility to nucleases within nuclear structure.

CORE RAG1 AND RAG2

The minimal domains of recombinase-activating gene 1 (RAG1) and RAG2 that can activate the rearrangement of a reporter construct. Unlike the full-length proteins, the core domains are soluble and have been used for all biochemical analysis of this reaction.

HISTONE CODE

The concept that site-specific post-translational modification of histones might function to regulate gene activity precisely; the code is determined by which amino acids are acetylated, methylated or phosphorylated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlissel, M. Regulating antigen-receptor gene assembly. Nat Rev Immunol 3, 890–899 (2003). https://doi.org/10.1038/nri1225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing